StrathE2E2 version 4.0.1: Implementation for the North Sea.

Michael R. Heath, Douglas C. Speirs, Alan Macdonald and Robert Wilson

Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK.
E-mail: m.heath@strath.ac.uk
Date: September 2023

Introduction

This document describes the configuration of StrathE2E2 for the North Sea and its parameterization to enable stationary state fitting for two time periods; 1970-1999 and 2003-2013. These represent contrasting periods of environmental conditions and fishing intensity.

Volumetric and seabed habitat data define the physical configuration of the system, and we can regard these as being fixed in time. Similarly, we regard the physiological parameters of the ecology model as being fixed in time. Some of them are set from external data while the remainder are fitted as detailed here. Changes in the model performance between the different time periods are thus due only to the hydrodynamic, hydro-chemical and fishery driving data.

North Sea model domain, physical structure, and time-independent parameters

Model domain

The perimeter of the North Sea model domain is bounded to the west and east by the UK and continental European coastlines respectively, and by open-sea boundaries to the north between Scotland and Denmark, and to the south at the English Channel. The open boundary to the north separates the shelf west of Scotland from the northern North Sea along a transect across the gap between the Orkney and Shetland Islands and then tracks approximately along the 200 m isobaths at the shelf edge (Figure 1). The internal boundary between the inshore/shallow and offshore/deep zones is defined as the 30 m isobath, which roughly divides the region into the shallow southern North Sea (International Council for the Exploration of the Sea (ICES) area IVc, northern boundary at latitude $53^{\circ} 30^{\prime} \mathrm{N}$), and the deeper northern North Sea (ICES areas IVa and IVb).

FIGURE 1 Maps of the StrathE2E2 model region. Within the North Sea the model resolves sub-area of seabed sediment habitat divided into inshore (shallower than 30 m) and offshore (separated by the thin red line in each panel). Within each zone, three sediment classes are represented - fine (muddy), medium (sandy) and coarse (gravel) (left panel). Within each of the six sediment habitats a proportion of the seabed area may present as exposed bedrock (right panel) which has different geochemical properties and in the inshore zone supports the kelp forests which are included in the model food web. Sedimentary data are from Wilson et al. (2018). The sea surface area of the model domain was estimated to by $485,605 \mathrm{~km}^{2}$.

Fixed physical configuration parameters

Background to the fixed area-proportions, volumetric and sediment property parameters of the model are shown in Tables 1 and 2.
TABLE 1. Description of the fixed (time-invariant) physical configuration parameters for the North Sea demonstration model.

Data	Description
Water column inshore/shallow and offshore/deep zone area proportions and layer thicknesses; seabed habitat area proportions and sediment properties.	Area proportions of depth zones and seabed habitats derived from $1 / 8$ degree resolution atlas of seabed sediment properties (Wilson et al. 2018). The atlas provides gridded data sets of bathymetry, median grain size, mud, sand and gravel content, porosity, permeability, organic nitrogen and carbon content, and natural disturbance rates due to wave and current bed shear stress.
Parameters for relationship between median grain size, sediment porosity and permeability. Permeability is used as the basis for estimating hydraulic conductivity which is a parameter in the representation of sediment processes in the model.	Porosity (proportion by volume of interstitial water) and permeability of each sediment habitat were derived from median grain sizes using empirically-based relationships. $\log _{10}(\text { porosity })=p_{3}+p_{4}\left(\frac{1}{1+e\left(\frac{-\log _{10}\left(D_{50}\right)-p_{1}}{p_{2}}\right)}\right)$ $D_{50}=$ median grain size (mm); parameters $p_{1}=-1.227, p_{2}=-0.270, p_{3}=-0.436, p_{4}=0.366$ (Heath et al. 2015) permeability $=10^{p_{5}} . D_{50}^{*}{ }^{p_{6}}$ where $D_{50}^{*}=0.11 \leq D_{50} \leq 0.50$ $p_{5}=-9.213, p_{6}=4.615$ (Heath et al. 2015) These relationships are coded into the StrathE2E2 R-package with the parameters in the csv setup file for the North Sea model. The parameters are probably a reasonable starting point for any future model of a new region. Derivation of the parameters is described in the following text.
Parameters for in-built relationship between sediment mud content, and slowly degrading (refractory) organic nitrogen content of seabed sediments (see description in this document).	Values for each sediment type derived from parameterised relationships between total organic nitrogen content of sediments (TON\%, percent by weight), mud content (mud\%, percent by weight) and median grain size ($D_{50}, \mathrm{~mm}$). $m u d \%=10^{p_{7}} \cdot D_{50}{ }^{p_{8}}$

	$p_{7}=0.657, p_{8}=-0.800$
$T O N \%=10^{p_{9}} . \mathrm{mud} \mathrm{\%} \%$	
	$p_{9}=-1.965, p_{10}=0.590$
Proportion of TON estimated to be refractory $=0.9$	
These relationships are coded into the StrathE2E2 R-package with the parameters in the	
csv setup file for the North Sea model. The relationships and parameters are probably a	
reasonable starting point for any future model of a new region, though there are clear	
regional variations. Derivation of the parameters is described in the following text.	

TABLE 2 Area-proportions of the inshore and offshore zones and the thicknesses of the water column layers. Sea surface area of the North Sea in the model domain was estimated to be $458,605 \mathrm{~km}^{2}$.

Property	Inshore/shallow	Offshore/deep
Sea-surface area proportion	0.2496	0.7504
Upper layer thickness (m)	24.16	30
Lower layer thickness (m)	NA	50.04

Area-proportions of seabed-habitats

Derivation of the area-proportions of seabed habitat in the inshore and offshore zones of the model domain relied on the atlas of seabed sediment properties from Wilson et al. (2018). The atlas provides a range of seabed data for $1 / 8$ degree cells over the NW European shelf, including the percentage of seabed area defined as rock (within 5 cm of the seafloor), the percentage of mud, sand and gravel fractions in the sediments, the whole-sediment median grain size, and the natural disturbance rate by currents and waves. Within each zone, we ranked the spatial cells by median grain size, and assembled cumulative area-proportion curves (Figure 3). Cells were then assigned to fine, medium and coarse sediment habitats according to the $15^{\text {th }}$ and $50^{\text {th }}$ centiles of these curves. The actual area of each habitat was then the sum of the areas of each set of assigned cells, less the proportion of area in these cells defined as rock (Table 3).

FIGURE 2 Cumulative proportion of area by whole-sediment median grain size (D50), for the inshore and offshore zones of the North Sea. Also shown is the cumulative proportion of natural disturbance due to currents and waves, and the cumulative proportion of seabed area swept by fishing gears (see later description), according to grain size.

TABLE 3 Area proportions of the 8 seabed habitat classes defined in the model by depth, rock or sediment type. Grey shaded cells indicate habitats in water deeper than 30 m . The sea surface area of the model domain was estimated to by $485,605 \mathrm{~km}^{2}$. Version 4.0 .0 . of StrathE2E allows for the offshore zone to overhand the continental shelf over the deep slope waters, but this is not required for the North Sea implementation

Sediment type and depth zone	Inshore/ shallow rock	Inshore/ shallow muddy sediments	Inshore/ shallow sandy sediments	Inshore/ shallow gravels	Offshore/ deep rock	Offshore/ deep muddy sediments	Offshore/ deep sandy sediments	Offshore/ deep gravels	Offshore deep ocean boundary
Area proportions	0.0030	0.0110	0.1878	0.0478	0.0057	0.2665	0.4595	0.0187	0
Median grain size (mm)	NA	0.130	0.273	1.816	NA	0.114	0.231	0.928	NA
Porosity	NA	0.441	0.391	0.367	NA	0.456	0.399	0.370	NA
Permeability $\left(\mathrm{m}^{2}\right)$	NA	5.00×10^{-14}	1.53×10^{-12}	2.50×10^{-11}	NA	2.68×10^{-14}	7.05×10^{-13}	2.50×10^{-11}	NA
Refractory organic nitrogen content (\%g.g ${ }^{-1}$)	NA	0.081	0.057	0.023	NA	0.064	0.046	0.024	NA

Sediment porosity
Various authors have presented data on sediment porosity and grain size: Ruardij \& Van Raaphorst (1995) and Lohse et al. (1993) for muds and sands from the southern North Sea; Serpetti (2012) and Serpetti et al. (2012) for coarse, mixed and fine grained sediments at 8 sites off the northeast coast of Scotland, repeated at monthly interval over an annual cycle. Wiesner et al. (1990), list data on grain size and water content (by weight) for a wide range of North Sea sediments. Water content can be converted to porosity assuming a solid material density of $2650 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ and a fluid density of $1027 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$. Combining these data sets, log-transformed porosity showed a sigmoidal relationship with $\log _{10}$ (median grain size) (D, mm), to which we fitted a relationship of the logistic form using Nelder Mead optimization in the 'optim' package of R (Table 4, Figure 3):
$\log _{10}($ porosity $)=p_{3}+p_{4}\left(\frac{1}{1+e\left(\frac{-\log _{10}(D)-p_{1}}{p_{2}}\right)}\right)$

TABLE 4 Fitted values and their standard error, of the four parameters for the function relating sediment porosity to median grain size.

Parameter	Fitted value	Standard error
p_{1}	-1.227	0.063
p_{2}	-0.270	0.046
p_{3}	-0.436	0.023
p_{4}	0.366	0.050

FIGURE 3 Assembled data on sediment porosity and median grain size, and the fitted relationship (solid line). Left panel, log-transformed data, right panel un-transformed data. black symbols: annual averaged data from Serpetti (2012) and Serpetti et al. (2012); red: Ruardij \& van Raaphorst (1995); open: Lohse et al. (1993); grey: Weisner et al. (1990).

Hydraulic conductivity

Hydraulic conductivity ($\mathrm{H}, \mathrm{m}_{\mathrm{s}} \mathrm{s}^{-1}$) represents the ease with which fluids flow through the particle grain matrix. The related term 'permeability' $\left(\mathrm{m}^{-2}\right)$ is a measure of the connectedness of the fluid filled void spaces between the particle grains. Permeability is a function only of the sediment matrix, whilst conductivity is a function of both the sediment and the permeating fluid, in particular the fluid viscosity and density.

Hydraulic conductivity is related to permeability by:
$H=$ Permeability \cdot fluid density $\cdot \frac{g}{\text { dynamic viscosity }}$
eqn 2
where: seawater density $=1027 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ at salinity 35 and temperature $10^{\circ} \mathrm{C}$; seawater dynamic viscosity $=1.48 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1}$ at salinity 35 and temperature $10^{\circ} \mathrm{C} ; \mathrm{g}=$ acceleration due to gravity $=9.8 \mathrm{~m} . \mathrm{s}^{-1}$

Hence, $H=$ Permeability $\cdot 6.8004 \times 10^{6}\left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right.$ at salinity 35 and temperature $\left.10^{\circ} \mathrm{C}\right)$ eqn 3

One of the few available datasets on whole sediment permeability in relation to median grain size is that of Serpetti (2012) and Serpetti et al. (2012). These data cover muddy-sand, sand and mixed sediments in the median grain size range 0.11 to 0.45 mm median grain size, sampled approximately monthly over an annual cycle at 7 sites off the east coast of Scotland. Permeability and median grain size were measured on cores from the upper 5 cm and upper 10 cm of the seabed at each site. A power function of median grain size (D, mm) was found to explain the differences in annual average permeability $\left(\mathrm{m}^{-2}\right)$ between sites ($\mathrm{r}^{2}=0.999$ for 10 cm cores, $\mathrm{r}^{2}=0.966$ for 5 cm cores) (Figure 4):

```
Permeability \(=10^{-8.675} . D^{4.958}(5 \mathrm{~cm}\) cores \() \quad\) eqn 4
Permeability \(=10^{-9.213} \cdot D^{4.615}(10 \mathrm{~cm}\) cores \() \quad\) eqn 5
```

The relationship for 10 cm cores was used in the model configuration to parameterise permeability given median grain size.

FIGURE 4 Annual average permeability $\left(\mathrm{m}^{-2}\right)$ of sediments from 7 sites off the north east coast of Scotland - data from Serpetti (2012) and Serpetti et al. (2012). Open symbols, permeability over the upper 5 cm of sediment, filled symbols over the upper 10 cm . We did not extrapolate the fitted permeability relationships to estimate values outside the median grain size range of the observations, but instead assumed that permeability was independent of grain size below 0.11 mm and above 0.5 mm . This constraint was based on unpublished field observations (M.Pace, pers. comm).

Refractory (non-dynamic) organic nitrogen content of sediments

The magnitude of the static organic nitrogen detritus pool in each sediment type is a required input to the model. The code includes an option to impute values from empirical relationships between total organic nitrogen (TON) and mud content, and between mud content and median grain size.

Comparison of sediment pigment content and total organic nitrogen (TON) content of sediments off northeast Scotland (Serpetti, 2012; Serpetti et al., 2012) suggests that 90% may be refractory (assuming nitrogen:pigment ratios of labile material). This is borne out by the observation that although phytoplankton pigment contents of shelf sediments show strong seasonality, total organic nitrogen content as almost constant. Total organic nitrogen content is typically expressed as a dry-weight specific percentage ratio (TON\%; percentage by weight, \%g. g^{-1}). Using such data, the organic nitrogen mass ($\mathrm{ONM}, \mathrm{mMN}$) in each sediment habitat can be calculated depending on porosity and sediment layer area and thickness.

ONM $=\frac{1}{14}\left(\right.$ TON $\% \cdot 10^{4} \cdot \rho_{\text {sediment }} \cdot$ area \cdot thickness $\cdot(1-$ porosity $\left.)\right)$ eqn 6
where $\rho_{\text {sediment }}$ is the density of particle grains in the sediment (quartz density $=2650 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$), and the sediment layer area and thickness have units of m^{2} and m respectively.

Empirical evidence shows that sediment TON\% is strongly related to the mud content (\% grain sizes $<0.063 \mathrm{~mm}$). However, relating TON\% to whole-sediment median grain size (which is the sediment-defining measure for imputing porosity and permeability) is more problematic since mixed and coarse grained sediments may have highly variable mud content, more or less independent of median grain size.

To derive parameters linking TON\% and mud\% content, we combined two sets of observations from the North Sea (Serpetti, 2012; Serpetti et al., 2012; Stephens \& Diesing, 2015; data for the latter being downloaded from the Cefas Data Hub (http://data.cefas.co.uk/\#/Search/1/sediment). Together these sets provided 356 pairs of TON\% and mud\% values. The data from Serpetti (2012) and Serpetti et al. (2012) also included values for median grain size, but not the Cefas data. So, we also assembled data from the Cefas Data Hub on particle size distributions, measured according to the same protocol as followed by Serpetti (2012) and Serpetti et al. (2012), and from these computed percentage mud content and whole-sediment median grain size. Using the combined data sets we were able to compute an approximate relationship between median grain size and mud content (Table 5, Figure 4, 5).

```
\(m u d \%=\operatorname{Min}\left\{100,10^{t p 1} \cdot D^{t p 2}\right\}\)
eqn 7
\(T O N \%=10^{t p 3} \cdot(m u d \%)^{t p 4}\)
eqn 8
```

TABLE 5 Fitted parameters for the relationships between mud content and whole-sediment median grajn size, and between Total Organic Nitrogen (TON; \% dry weight) and mud content.

Relationship	Regression statistics	Parameter	Estimated value	Standard error
mud\% vs median grain size	R-squared: 0.6528	tp1	0.65653	0.02263
	F-statistic: 577.2 on 1 and 307 DF	tp2	-0.80043	0.03332
TON\% vs mud\%	R-squared: 0.6576	tp3	-1.96546	0.03247
	F-statistic: 674.1 on 1 and 351 DF	tp4	0.58994	0.02272

FIGURE 4 Data on mud content and corresponding whole-sediment median grain size from Serpetti (2012), Serpetti et al. (2012) and the Cefas Data Hub. As is to be expected given that many of the samples will have been from mixed sediment types, there is considerable scatter in these data, so we confined the dataset to points within the ranges defined by the red-dashed lines for the purpose of fitted the parameters for the curve shown by the grey line (Table 5).

FIGURE 5 Left panel, sampling locations of sediments for Total Organic Nitrogen content (\% dry weight) and mud content in Serpetti (2012), Serpetti et al. (2012) and the Cefas Data Hub. Right panel, scatter plot of the two data sets with the fitted relationship shown by the grey line (Table 5).

Fixed biological configuration parameters which were not subject to fitting
TABLE 6 Background to the fixed biological configuration parameters for the North Sea model which were not subject to fitting.

Data	Description
Assimilation efficiencies for each living guild in the model (Heath, $2012)$	Fixed parameters defining the proportion of ingested mass of food that contributes to new body tissue, after subtracting defecation and the metabolic costs of digestion and synthesis.
Biomass loss rates due to	Proportion of biomass lost to ammonia per day due to non-feeding related metabolism at a given reference

temperature-dependent metabolism for each living resource guild for temperature	temperature. Rages for individual guilds broadly related to typical body mass of representative species. Temperature dependency following a Q_{10} function.		
Q_{10} values for dependent processes, and the			
Q_{10} reference temperature		\quad	Separate Q_{10} values for autotrophic uptake of nutrient, heterotrophic feeding, and heterotrophic
---	---	---	---
metabolism based on literature data.	$	$	Light intensity required to
:---	:---		
saturate autotrophic nutrient			
uptake	Light saturation intensity for nutrient uptake cannot be treated as a fitted value since it is confounded with other uptake parameters. Value estimated from survey of laboratory experiments.		
Annual weight specific fecundities of planktivorous and demersal fish guilds and the two benthos guilds in the model (suspension/deposit feeders and carnivore/scavenge feeders)	Guild-level values derived by surveying the literature		
Harvestable biomass density threshold for each resource guild.	The living resource guilds in the model represent a mixture of harvestable and non-harvestable species, especially the invertebrate guilds. The density threshold parameter sets a limit for the guild biomass below which the harvestable species are assumed to be exhausted. Values set from analysis of trawl, plankton and benthos survey species biomass compositions.		
Minimum inedible biomass of carnivorous zooplankton	The carnivorous zooplankton guild is a key component of the food web, predated on by all the fish and top- predators. However it represents an extremely diverse range of fauna many of which are not edible in significant quantities by the guild predators, e.g. scyphomedusae. A minimum edible threshold is set to ensure that the guild as a whole cannot be extirpated by predation. The value is a rough estimate of scyphomedusae biomass.		

Biological event timing parameters

TABLE 7 Background to the biological event timing parameters for the North Sea model (not subject to fitting).

Data	Description
Spawning start and end dates for fish and benthos	For the fish guilds the dates were obtained from literature survey (Heath, 2012), and for the benthos guilds by reference to Continuous Plankton Recorder (CPR) data for the North Sea (Kirby et al., 2008). The annual weight-specific fecundity is assumed to be shed uniformly between the start and end dates of spawning.

Recruitment start and end dates
for fish and benthos

Extra-domain stock biomass of migratory, and the proportion invading the domain each year. Start and end dates for the annual invasion, and start and end dates for the emigration. (see description below).

Obtained from literature survey (Heath, 2012). The annual cohort of larvae/juveniles of each fish and
benthos guild is assumed to recruit to the settled stage at a uniform daily rate between the start and end dates.
The main migratory fish species undertaking a seasonal transit of the North Sea is the Atlantic mackerel. Data on the North East Atlantic stock biomass, the proportion entering the North Sea and the timing of the migration, were derived from stock assessment literature (ICES, 2013a) and data on the spatial distribution of landings (Nøttestad et al., 2016).

Migratory fish in the North Sea model are assumed to be Atlantic mackerel. The fishery for Atlantic mackerel is one of the most valuable in the northeast Atlantic. Spawning takes place off southwest Ireland in April, and post spawning fish migrating rapidly northwards along the continental shelf edge over several thousand km to feed in the Norwegian Sea or more recently off Iceland (Holst et al., 2016; Nøttestad et al., 2016). The return migration in autumn and winter is slower and a proportion of the stock travels south in shelf waters of the northern North Sea and west of Scotland where a proportion of the harvest is taken (ICES 2013a).

For the purposes of the model, we assume that there is no feedback between fishing and environmental conditions in the North Sea and the biomass and migrations patterns of the whole northeast Atlantic mackerel stock. Implementing such a feedback would be an interesting but separate research project. However, in this version of StrathE2E2 the timing of immigrations and emigrations, and the mass influx across the ocean boundary during the annual immigration phase are treated as period-specific external driving data.

Data on the 'global' stock of northeast Atlantic mackerel (wet biomass) are available from stock assessments (ICES, 2013a), and converted to molar nitrogen mass using appropriate conversion ratios (Greenstreet, 1996). The proportion of the migrating stock entering the North Sea, and the timing of the inward and outward migrations are estimated from monthly resolved data on the spatial distribution of fishery catches. A residual proportion of the peak abundance in the North Sea remaining as residents (if any) is estimated from summer trawl survey data. The model setup code calculates the parameters which are needed in the ecology model. These are the only fixed (i.e. non-fitted) ecology model parameters which are period-specific.

TABLE 8 Migratory fish data and parameters for the periods 1970-1999 and 2003-2013. The data are processed in the model setup to calculate the immigration flux parameters needed in the ecology model.

Migratory fish data and timing parameters	$\mathbf{1 9 7 0 - 1 9 9 9}$	$\mathbf{2 0 0 3 - 2 0 1 3}$
Migratory fish oceanic biomass (tonnes wet weight)	3190000	3800000
Migratory fish carbon to wet weight $\left(\mathrm{g} \cdot \mathrm{g}^{-1}\right)$	0.184	0.184

Model domain sea surface area (for purposes of calculating immigration flux density $\left(\mathrm{km}^{2}\right)$	485605	485605
Proportion of oceanic population entering the model domain each year	0.33	0.66
Immigration start day	210	210
Immigration end day	330	330
Proportion of peak population in the model domain which remains and does not emigrate	0.1	0.1
Emigration start day	15	15
Emigration end day	45	45

Time-varying physical and chemical driving data for the ecology model

Monthly resolution time-varying physical and chemical driving parameters for the model were derived from a variety of sources:

- Temperature, vertical mixing coefficients, volume fluxes, and boundary nutrient, detritus and chlorophyll concentrations from outputs of a 7 km grid resolution NEMO-ERSEM hindcast simulation from 1981-2015 forced by reanalysis data at the atmospheric and ocean boundaries (Butenschön et al., 2016) (see https://www.shelfseasmodelling.org/).
- Bed shear stress due to tidal currents from a simulated climatological year with an FVCOM hydrodynamic model of the North Sea and waters west of the British Isles (Scottish Shelf Model; De Dominicis et al., 2017)
- Remote sensing data products on Suspended Particulate Matter (SPM, ftp://cems-oc.isac.cnr.it/Core/OCEANCOLOUR GLO OPTICS L4 REP OBSERVATIONS 009 081/dataset-oc-glo-opt-multi-14-spm 4km monthly-rep-v02)
- Wave height and period from the ERA-Interim reanalysis (Dee et al., 2011)
- Nitrate data from the NODC World Ocean Data Climatology 2013 (WOA13 V2; Garcia et al., 2014)
- Ammonia data from the ICES Hydro-chemical Data Centre (http://www.ices.dk/marine-data/data-portals/Pages/ocean.aspx)
- Atmospheric deposition of nitrate and ammonia from the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air pollutants in Europe (European Monitoring and Evaluation Programme; EMEP; Simpson et al., 2003, Tarrasón, 2003)
- River nitrate and ammonia concentrations and freshwater volume outflows from a statistical reconstruction of European discharge data 1960-2005 (Heath, 2007a)

Details of how these data were processed are given in Table 9.

TABLE 9 Description of the time-varying (monthly resolution) physical, and chemical driving data for the North Sea model

Dat	Description
Natural disturbance rate of each sediment habitat.	Monthly averaged area-proportions of each seabed sedimentary habitat type where the bed shear stress exceed the critical value for particle motion, were taken from the $1 / 8$ degree resolution atlas of seabed sediment properties (Wilson et al., 2018). The atlas of critical shear stress exceedance was based on a climatological year of high resolution hydrodynamic model outputs (FVCOM Scottish Shelf Model; De Dominicis et al., 2017), and wave climatology from the ERA-Interim reanalysis (Dee et al., 2011). Climatological annual cycle of data used for both 1970-1999 and 2003-2013 simulation periods.
Vertical mixing coefficients between the upper and lower layers of the deep zone.	Extracted as monthly averaged values from 7 km grid resolution NEMO-ERSEM model output (Butenschön et al., 2016). Period-specific climatological annual cycle of data used for 1970-1999 and 2003-2013 simulation periods.
Volume fluxes into the model domain across open sea boundaries, and from the upper layer of the offshore/deep zone into the inshore/shallow zone, expressed as proportions of the receiving layer volume per day	Monthly averaged daily inflow and outflow volume fluxes derived by integrating daily mean velocities directed perpendicular to the model domain boundary at grid points in each depth layer along transects through outputs from the 7 km NEMO hydrodynamic model (Butenschön et al., 2016). Monthly averaged daily inflow volume fluxes then divided by the volume of the receiving layer in the model domain to estimate a daily flushing rate. Period-specific climatological annual cycles of data used for 1970-1999 and 2003-2013 simulation periods.
Monthly averaged temperatures for each water column layer.	Derived by monthly averaging values at grid points within the inshore and vertical layers of the offshore zones from the 7 km NEMO hydrodynamic model (Butenschön et al., 2016). Periodspecific climatological annual cycles of data used for 1970-1999 and 2003-2013 simulation periods.
Monthly averaged suspended particulate matter (SPM) concentrations $\left(\mathrm{mg} . \mathrm{m}^{-3}\right)$ in the shallow zone and the deep zone upper layer	Monthly averaged of 4km, 8-day estimates of non-algal surface SPM (g.m ${ }^{-3}$) from September 1997 to August 2017 from the Globcolour Project. These data are derived from satellite observations using the algorithm of Gohin (2011). Data were downloaded from the ftp server ftp://cemsoc.isac.cnr.it/Core/OCEANCOLOUR GLO OPTICS L4 REP OBSERVATIONS 009 081/dataset-oc-glo-opt-multi-14-spm 4km monthly-rep-v02. Climatological annual cycle of data used for both 1970-1999 and 2003-2013 simulation periods.
Monthly average light attenuation coefficient for the inshore and offshore surface layers	Parameterised from a linear relationship between light attenuation coefficient and suspended particulate matter concentration (SPM) (Devlin et al., 2008)
Monthly averaged daily integrated irradiance at the sea surface ($E \cdot \mathrm{~m}^{-2} . \mathrm{d}^{-1}$)	Derived from regional meteorology data. Climatological annual cycle of data used for both 19701999 and 2003-2013 simulation periods.

Monthly averaged daily atmospheric deposition rates of wet and dry, oxidised and reduced nitrogen onto the sea surface in the shallow and deep zones (mMN. $\mathrm{m}^{-2} . \mathrm{d}^{-1}$)	Derived from $50 \times 50 \mathrm{~km}^{2}$ gridded data for the years 1980, 1985, 1990, 1995, and 2000-2015, available from the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air pollutants in Europe (EMEP) Unified $50 \times 50 \mathrm{~km}^{2}$ grid model. Pre-2000 data available only as annual averages, from revision 1.7 of the model; Simpson et al., 2003, Tarrasón, 2003; see https://www.emep.int/mscw/mscw ydata.html\#Foot2. Data previously downloaded from www.emep.int/Model data/yearly data.html in 2007 (Heath 2007a) and no longer available online. Data from 2000 onwards available as monthly averages from https://thredds.met.no/thredds/catalog/data/EMEP/2019 Reporting/catalog.html. Climatological annual cycles of monthly oxidised and reduced nitrogen deposition rates extracted for 2003-2013. Monthly rates relative to the annual mean were then used to generate a climatological seasonal cycle representative of the 1970-1999 period based on the annual mean deposition rates for 1980,1985, 1990 and 1995.
Monthly averaged , freshwater river infow rates (expressed as a daily proportion of the receiving layer volume), and volume weighted concentrations of oxidised and reduced dissolved inorganic nitrogen in the inflowing river waters ($\mathrm{mMN} . \mathrm{m}^{-3}$)	Derived from 1960-2005 monthly averaged nutrient flux and freshwater discharge fluxes into 1 longitude $\times 0.5$ latitude cells around the entire northwest European coastline, originating from a synthesis of national monitoring data and statistical modelling based on rainfall data (Heath, 2007a). Period-specific climatological annual cycles of data used for 1970-1999 and 2003-2013 simulation periods.
Mean concentrations of nitrate ammonia, phytoplankton and suspended detritus $\left(\mathrm{mMN} . \mathrm{m}^{-3}\right)$, in adjacent ocean waters inflowing to the offshore/deep zone upper layer, adjacent ocean waters inflowing to the offshore/deep zone lower layer, and adjacent shelf waters inflowing to the inshore/shallow zone	Observational data on the boundary variables are of extremely variable resolution. However, simulated outputs of all four variables were available at high space-time resolution from a 7 km grid resolution hind-cast run of the NEMO-ERSEM model (Butenschön et al., 2016). Comparisons of the available observational data on nitrate, ammonia and chlorophyll with corresponding values in in the NEMO-ERSEM outputs (e.g. Ciavatta et al., 2016 for chlorophyll) show sufficiently large space-time varying biases as to rule out driving the StrathE2E2 model with boundary data extracted directly from the NEMO-ERSEM outputs. To do so would mean that we were driving the model with data which were inconsistent with the other observational measurements on the state of the ecosystem against which the StrathE2E2 parameters were to be optimized. We therefore used a bias correction methodology (Maraun 2016) to generate monthly resolution 3-dimensional climatologies of nitrate, ammonia and phytoplankton concentrations from the NEMO-ERSEM outputs, and from these we extracted the required boundary concentrations for StrarhE2E. We used the same climatological boundary data for both the 1970-1999 and 2003-

2013 StrathE2E2 simulation periods on the grounds that the magnitudes of the bias corrections were equivalent to or larger than inter-period differences in the ERSEM outputs.

Nitrate
A depth-resolved, 1 degree by 1 -degree gridded monthly climatology of nitrate was available from the World Ocean Atlas 2013 Version 2 (WOA13 V2; Garcia et al., 2014). These data alone were sufficient to have provided credible climatological boundary conditions for the offshore zone and layers of StrathE2E2, but not for the inshore zone. We therefore used the WOA13 climatology to bias-correct the monthly climatologies of nitrate predicted by NEMO-ERSEM over the period corresponding the years in which the majority of the WOA data were collected (1980-1999).

We first calculated monthly 3 -dimensional climatologies of NEMO-ERSEM nitrate data for the period 1980-1999. Then, for grid cells corresponding to the mid-points of WOA13 cells we calculated the relative bias or "change factor" (Nitrate woal Nitrate $_{\text {ersem }}$), and interpolated these over the entire 3-dimensional grid using nearest neighbour. Finally, the interpolated monthly change factors grids were multiplied into the monthly ERSEM climatologies to generated a biascorrected climatological annual cycle of 3-dimensional nitrate concentrations.

Ammonia

Observational ammonia data for the period 1980-2013 were downloaded from the ICES data portal (http://www.ices.dk/marine-data/data-portals/Pages/ocean.aspx). Each observation was resolved by time, longitude, latitude and depth of collection. However, the data set was extremely sparse with large spatio-temporal gaps.

We first created an aggregated observational data set at a spatial resolution of 1 by 1 degrees per month, and for the surface and deep layers (surface defined as the top 30 m). This was an approximate climatology of ammonia, but with many gaps. We then followed the same procedure as for nitrate to create a bias-corrected climatological annual cycle of 3-dimensional ammonia concentrations.

Phytoplankton

There are no space-time gridded data produces of in-situ phytoplankton biomass. In addition, satellite chlorophyll products are almost universally based on algorithms fitted to global observational data and can therefore exhibit regional spatial and temporal bias. We therefore used the surface (top 5 m) chlorophyll climatology of Clarke et al. (2006) which was generated by a

	statistical methodology to blend satellite chlorophyll with in-situ water-bottle derived chlorophyll measurements from the North Atlantic. This surface climatology was first interpolated to the NEMO-ERSEM horizontal grid. We then calculated a comparable monthly climatology of surface chlorophyll from NEMO-ERSEM outputs. As with nitrate, we then calculated a change-factor (Chl $_{\text {clarke }} /$ Chl $_{\text {ERSEm }}$) for each surface grid cell and in each month and applied this across all NEMOERSEM chlorophyll predictions at each location in time and space. The change factors were applied uniformly across all depths on the assumption that NEMO-ERSEM reflected the true vertical distribution of chlorophyll. This resulted in a set of monthly 3-dimensional chlorophyll data sets where the surface chlorophyll climatology matched the observational data set of Clarke et al. (2006). Chlorophyll concentrations were then converted to nitrogen units assuming carbon:chlorophyll (weight ratio) of 20 and Redfield molar ratios of carbon:nitrogen. Suspended detritus Observational data on organic detritus are extremely sparse. Conditions for detritus nitrogen were therefore taken directly from NEMO-ERSEM without any bias correction. Boundary data extraction For each bias-corrected climatological data set we calculated monthly averages of values at grid cells located at vertical slices along each of the open inshore and offshore zone boundaries and depth layers of the StrathE2E2 model domain.

Inputs to the North Sea fishing fleet model

Background

The key configuration data for the fishing fleet model are the definitions of the gears in terms of their power with respect to each of the harvestable resource guilds, discarding rates, processing-at-sea rates, and their seabed abrasion rates. These can be regarded as static parameters for each gear.

An additional class of static parameters is the scaling coefficients between effort (activity x power) and the harvest ratio generated on each model resource guild. These parameters have to be derived by fitting.

Finally, there are parameters which we can consider as driving data since they would be expected to vary with time. These are the activity rates of each gear, and their spatial distributions across the habitat types.

Static gear-definition parameters in the fishing fleet model

TABLE 10 Description of static parameters for the fishing fleet model. These parameters would be expected to remain constant over time, so any changes invoked would imply a change in the design or operation of a gear type.

Data
Definition of gear types
Definition of the proportion of retained catch of each model resource guild which is processed (gutted) at sea by each gear type, and the proportion of live weight discarded as offal as a result of processing.
Scaling parameters relating effort to harvest ratios applied to each model resource guild
Seabed abrasion rates of each gear type.
Sediment penetration depth for seabed- contact fishing gears
Damage mortality rates on benthos species caused by seabed-contact towed gears
Parameters for an empirically-based relationship between demersal fish biomass in the model, and the proportion of annual catch weight made up of non-quota limited species (see this document for details).
Parameters for empirically based relationships between demersal fish biomass in the model, and the proportion of annual catch which is undersize for landing or marketing. Separate relationships for

Description

Data for 2003-2013 derived from EU Scientific, Technical and Economic Committee for
Fisheries (STECF) reports (data filename:
'2014_STECF 14-20 - Fishing Effort Regimes data tables.zip';
http://stecf.jrc.ec.europa.eu/data-reports). Full description in Heath et al., 2015
Proportion of live weight discarded by processing, from Coull et al. (1989). Proportion of retained catch processed at sea approximately estimated from the fish market sampling data.

Derived by fitting harvest ratios, as described later in this document.

Data on the area of seabed disturbed per unit time of towing by different fishing gears obtained from published studies (Eigaard et al., 2015).
Single penetration depth (5 cm) assumed across all seabed-contact gears, and independent of sediment type, based on data from Eigaard et al. (2015).
Proportion of fauna killed per trawl pass assuming 5 cm penetration depth, obtained from
literature meta-analysis (Hiddink et al., 2017)
Relationship established from analysis of research vessel trawl survey catch per unit effort data, and species landings data:

$$
\varphi_{N Q}=p_{11} \cdot e^{-p_{12} \cdot B}
$$

where φ_{NO} is the proportion of annual commercial catch weight which comprises non-quota species, B is the demersal fish community biomass on 1 January, p_{11} and p_{12} are fitted parameters.
Relationship established from analysis of research vessel trawl survey catch per unit effort data, and species landings data:

$$
\varphi_{U, x}=p_{13, x} \cdot e^{-p_{14, x} \cdot B}
$$

where $\varphi_{u \times x} \times=$ quota-limited/non-quota) is the proportion of catch weight which is undersize for legal landing (quota-limited group) or for marketing (non-quota group), B is the demersal

```
quota-limited and non-quota species groups fish community biomass on 1 January, p}\mp@subsup{p}{13,x}{}\mathrm{ and p}\mp@subsup{p}{14,x}{}\mathrm{ are fitted parameters.
(see this document for details).

\section*{Potentially time-varying parameters of the fishing fleet model}

TABLE 11 Description of potentially time-varying driving data for the fishing fleet model.
\begin{tabular}{|l|l|}
\hline Data & Description \\
\hline \begin{tabular}{l} 
Catching power and discard rates of each \\
resource guild by each gear
\end{tabular} & \begin{tabular}{l} 
Data on power and discard rates for 2003-2013 derived from EU Scientific, Technical and \\
Economic Committee for Fisheries (STECF) reports (data filename: \\
'2014_STECF 14-20 - Fishing Effort Regimes data tables..ip'; \\
http://stecf.jrc.ec.europa.eu/data-reports). Full description in Heath et al., 2015.
\end{tabular} \\
& \begin{tabular}{l} 
Technological creep was assumed to results in a 2\% per year increase in power for all \\
gear/guild combinations (Engelhard, 2008; Palomares \& Pauly, 2019).
\end{tabular} \\
& \begin{tabular}{l} 
Data for parameterising catching power of gears for small cetaceans derived from a variety of \\
sources including the ICES Working Group on the Bycatch of Protected Species (ICES, \\
2015a,b)
\end{tabular} \\
\hline Regional activity rates, of each gear type & \begin{tabular}{l} 
Data for 2003-2013 derived from EU Scientific, Technical and Economic Committee for \\
Fisheries (STECF) reports (data filename: \\
2014_STECF 14-20-Fishing Effort Regimes data tables.zip'; \\
http://stecf.jrc.ec.europa.eu/data-reports). Full description in Heath et al. (2015).
\end{tabular} \\
\hline \begin{tabular}{l} 
Spatial proportional distribution of activity by \\
each gear
\end{tabular} & \begin{tabular}{l} 
Proportion of domain-wide annual average activity rate over each seabed habitat type, \\
derived by overlaying spatial distributions of activity from the EU Scientific, Technical and \\
Economic Committee for Fisheries (STECF) reports, onto spatial distributions of seabed \\
sediment types derived from the atlas of sediment properties (Wilson et al., 2018).
\end{tabular} \\
\hline
\end{tabular}

\section*{Data processing to derive fish and invertebrate related parameters for the fleet model}

Processing of Scientific, Technical and Economic Committee for Fisheries (STECF) and Norwegian landings data analysis

Data on the landings, discards, activity and economic performance of the fleet sectors of all EU member states are available for STECF (https://stecf.jrc.ec.europa.eu/dd/effort). From 2000 onwards, the landings and effort data are resolved by at least 1 longitude \(\times 1 / 2\) latitude cells (approximately \(30 \times 30\) nautical miles). Discard data are available only at a more aggregated spatial resolution. The dataset for NW European water includes records on 101 different species covering mostly finfish. Invertebrates are under-represented in the records. We aggregated the species data into the coarse 'functional' categories defined in the StrathE2E2 model.

The data contain 32 different fishing gear designations. Some of which are local variants appropriate to particular countries or regions. We aggregated the STECF gear types up into 11 coarser groups for use in StrathE2E2. The aggregation rules are shown in Table 12

TABLE 12 Correspondence between raw STECF gear codes and gear categories in the analyses presented here.
\begin{tabular}{|c|c|c|}
\hline STECF Code & Gear description & StrathE2E2 model gear type \\
\hline \begin{tabular}{l}
PELAGIC \\
TRAWLS
\end{tabular} & Pelagic trawls & \multirow[t]{3}{*}{Pelagic trawls \& seines} \\
\hline PEL_TRAWL & Pelagic Trawl & \\
\hline PEL_SEINE & Pelagic seine nets & \\
\hline TR3 & Bottom trawls and seines of mesh size equal to or larger than 16 mm and less than 32 mm - mostly targeting sprat. & \multirow[t]{2}{*}{Sandeel \& sprat trawls} \\
\hline OTTER & Bottom trawls (for sandeel) & \\
\hline LL (landings in a statistical rectangle \(>50 \%\) by weight mackerel) & Drifting longlines (for pelagic fish) & Longline mackerel \\
\hline BT2 & Beam trawls of mesh equal to or larger than 80 mm and less than 120 mm . & \multirow[t]{2}{*}{Beam trawl demersal} \\
\hline BT1 & Beam trawls of mesh equal to or larger than 120 mm & \\
\hline DEM SEINE & Danish and Scottish seiners & Demersal seine \\
\hline TR1 & demersal trawls/seines with larger mesh sizes > 100MM & \multirow[t]{2}{*}{Demersal otter trawl (mainly TR1)} \\
\hline \[
\begin{aligned}
& \hline \text { TR2 (landings in } \\
& \text { a statistical } \\
& \text { rectangle }<30 \% \\
& \text { by } r \\
& \hline
\end{aligned}
\] & Demersal trawls and seines with mesh 70-99mm & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Norway lobster) & & \\
\hline BOTTOM TRAWLS & Bottom trawls & \\
\hline 3A & Bottom trawler mesh size \(\geq 32 \mathrm{~mm}\) ) & \\
\hline LL (landings in a statistical rectangle < \(50 \%\) by weight mackerel) & Set longlines (for demersal fish) & Longline \& gillnets demersal \\
\hline GN1 & Gill nets, entangling nets. & \\
\hline GILL & Drift and fixed Nets except Trammel Nets & \\
\hline 3B & Gillnet \(\geq 60 \mathrm{~mm}\) & \\
\hline TRAMMEL & Trammel nets & \\
\hline GT1 & Trammel nets & \\
\hline BEAM & Beam trawl targeting shrimp (in the North Sea) & Beam trawl shrimp \\
\hline TR2 (landings in a statistical rectangle >30\% by weight Norway lobster) & Demersal trawls and seines with mesh 70-99mm & Nephrops trawl \\
\hline POTS & Pots and traps & Creels and pots \\
\hline DREDGE & Dredges (targeting scallops in the North Sea) & Mollusc dredges \\
\hline
\end{tabular}

There were some specific considerations involved in the gear aggregations, depending on the species targeted in particular areas.
Beam trawls: The STECF beam trawl categories BT1 and BT2 more or less exclusively target demersal finfish species in the North Sea. It is therefore reasonable to combine BT1 and BT2 into a single model gear. However, care must be taken with the BEAM class. In the North Sea, landings from BEAM gears are more or less exclusively common shrimp ( \(98.7 \%\) of the total). Elsewhere, landings from BEAM are almost exclusively demersal fish. We therefore created a 'Beam trawl shrimp' gear in the North Sea.

TR2 trawls:_The TR2 category covers gears used in a variety of fisheries in the North Sea:
- A fishery for Nephrops, which has a significant bycatch of demersal fish
- Mixed fishery in the southern North Sea, with whiting and other finfish species as the main components
- Danish and Swedish fishery targeting demersal finfish in the Skagerrak.

Since the targeted Nephrops fishery operates exclusively in muddy areas and there are particular concerns about the seabed impact of this fishery we sought to disaggregate TR2 to identify the Nephrops trawl component. Country level landings data help us with the disaggregation. If the TR2 landings by an individual country from an individual ICES statistical rectangle comprised more than \(30 \%\) Nephrops then we assigned that rectangle's TR2 landings and activity to the Nephrops gear. If it was less than \(30 \%\) we assigned it to the demersal otter trawl category.

Longlines (LL): Longlines are extensively used in drifting, near-surface set mode for catching mainly mackerel and tuna, and in a near-seabed set mode for catching demersal fish such as cod and ling. Apart from the very different species-targeting of these two modes of operation, there are consequences for by-catch of non-target species. In particular, various seabird species are vulnerable to

\section*{Estimating Norwegian fishing activity from landings data}

A shortcoming of the STECF data is that it only includes data from EU Member States. So, while effort and landings from EU activity in Norwegian and Faroese territorial waters are included, the equivalent data for Norwegian and Faeroese vessels are not. This is a problem for analysis of spatial and national shares of total yields and effort in the North Sea where Norway has a significant share of the total catch. The Faeroe Islands also have an access agreement with the EU, but their activities in the North Sea are relatively minor.

We made a request to the Norwegian Directorate of Fisheries, Statistics Department, who provided all the Norwegian annual landings data from the North Sea and west of Scotland regions, resolved by species and 1 longitude \(\times 1 / 2\) latitude cells for the years 2003-2016. We processed these data to conform with the STECF data, but still we lacked a breakdown of the landings by gear, or any record of the activity rates of Norwegian vessels to compare with the EU activity data. However, given that each of the STECF gears largely targets particular species (e.g. TR3 targets sandeels/sprats, etc), and assuming that the pattern of targeting and the selectivity of the gear types is the same in the EU and Norwegian fishery, we developed a scheme to impute the Norwegian gear activity and the distribution of Norwegian landings across gear types for a given year and geographic area (Figure 6). We carried out this procedure for the inshore and offshore zones separately.


FIGURE 6 Workflow for imputing Norwegian effort per gear type, and the distribution of Norwegian landings across gear types in a given year and geographic area, given the STECF data and the Norwegian landings data obtained from the Directorate of Fisheries. Red cells indicate the input data that we have from STECF and the Norwegian Fisheries Directorate, blue cells indicate the data we wish to impute, grey cells represent intermediate data generated during the processing. EU = European Union fleet data, NO = Norwegian fleet data. Estimates of Norwegian effort and landings per gear alone, is simply the imputed total (EU+NO) minus the known EU component.

\section*{Impacts of different fishing gears on the seabed}

Eigaard et al. (2015) evaluated seabed areas impacted per hour of trawling by a range of fishing gear fleets, including those listed by STECF. We mapped our gear classes on to those of Eigaard et al. and produced estimates of ploughed area per unit time, assuming a gear penetration depth of 5 cm (Table 13).

TABLE 13. Seabed abrasion rates for fishing fleets in the North Sea (Eigaard et al., 2015).
\begin{tabular}{|l|c|}
\hline Gear category & Seabed abrasion rate \(\mathbf{~ m}^{2} . \mathbf{s}^{-1}\) \\
\hline Pelagic trawls and seines & 0 \\
\hline Sandeel and sprat trawls & 8.8 \\
\hline Longline Mackerel & 0 \\
\hline Beam trawl demersal & 54.1 \\
\hline Demersal Seine & 22.4 \\
\hline Demersal otter trawl & 17.1 \\
\hline Longline \& gillnets demersal & 0 \\
\hline Beam trawl shrimp & 13.5 \\
\hline Nephrops trawl & 78.9 \\
\hline Creels \& pots & 0 \\
\hline Mollusc dredges & 22.4 \\
\hline Norwegian whalers & 0 \\
\hline
\end{tabular}

\section*{Regional activity density of each gear category}

For each of the StrathE2E2 gear types assembled from the STECF data (Table 12), we summed the inshore and offshore annual activity rates (seconds per year) of the StrathE2E2 gear groups, and the corresponding Norwegian activity, and divided by the area of the whole model domain to obtain an annual activity density. The inherent assumption in this process was that the STECF gears contributing to each StrathE2E2 gear group have equivalent power. Finally, we then averaged the annual values for each gear group over the duration of the STECF data period (2003-2013).

TABLE 14 2003-2013 annual average activity (hours per year within the StrathE2E2 model domain) by EU and Norwegian vessels for each of the gear aggregations in the fleet model.
\begin{tabular}{|l|r|}
\hline StrathE2E2 gear group & Activity (s.m \({ }^{-\mathbf{2} . \mathbf{d}^{-1} \text { ) }}\) \\
\hline Pelagic Trawl \& Seine & \(2.17 \mathrm{E}-06\) \\
\hline Sandeel \& sprat trawls (Otter30-70mm \& TR3) & \(4.23 \mathrm{E}-06\) \\
\hline Longline mackerel & \(1.68 \mathrm{E}-06\) \\
\hline Beam Trawl demersal (BT1 \& BT2) & \(1.15 \mathrm{E}-05\) \\
\hline Demersal Seine & \(1.72 \mathrm{E}-08\) \\
\hline Demersal Otter Trawl (TR1) & \(2.16 \mathrm{E}-05\) \\
\hline Gill Nets \& Longline demersal & \(7.92 \mathrm{E}-06\) \\
\hline Beam Trawl shrimp & \(1.27 \mathrm{E}-05\) \\
\hline Nephrops Trawl (TR2) & \(1.72 \mathrm{E}-05\) \\
\hline Creels & \(2.40 \mathrm{E}-05\) \\
\hline Mollusc Dredge & \(3.11 \mathrm{E}-06\) \\
\hline
\end{tabular}

\section*{Spatial distribution of fishing activity}

The 2003-2013 average geographical distribution of EU gear activity, resolved by 1 degree longitude \(\times 0.5\) degree latitude statistical rectangles was derived from the STEFC database. Then, we overlaid the spatial distribution of the 8 seabed habitat classes in the model, and derived the proportion of total EU activity occurring within each habitat (Table 15). Finally, we assumed that Norwegian activity in each gear class was distributed in proportion to EU activity.

There are no data on the spatial distributions of gear activity during the 1970-1999 model fitting period, so we assumed that the proportional distribution of activity during 2003-2013 was also representative of this earlier period.

TABLE 15 2003-2013 average proportion of North Sea domain-wide activity by each gear category occurring over each seabed habitat, derived from STECF activity data and seabed sediment class data. The bottom row shows the area-proportions of each seabed habitat for comparison. The "deep ocean" habitat refers to the portion of the offshore zone with is allowed to overgand the shelf over deep ocean waters, but this is not required for the North Sea model.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Gear category } & \begin{tabular}{c} 
Shallow \\
rock
\end{tabular} & \begin{tabular}{c} 
Shallow \\
mud
\end{tabular} & \begin{tabular}{c} 
Shallow \\
sand
\end{tabular} & \begin{tabular}{c} 
Shallow \\
gravel
\end{tabular} & \begin{tabular}{c} 
Deep \\
rock
\end{tabular} & \begin{tabular}{c} 
Deep \\
mud
\end{tabular} & \begin{tabular}{c} 
Deep \\
sand
\end{tabular} & \begin{tabular}{c} 
Deep \\
gravel
\end{tabular} & \begin{tabular}{c} 
Deep \\
ocean
\end{tabular} \\
\hline \begin{tabular}{l} 
Pelagic trawls \& \\
seines
\end{tabular} & 0.0023 & 0.0223 & 0.1857 & 0.0566 & 0.0041 & 0.3618 & 0.3324 & 0.0349 & 0 \\
\hline \begin{tabular}{l} 
Sandeel \& sprat \\
trawls
\end{tabular} & 0.0016 & 0.0419 & 0.1885 & 0.0993 & 0.0033 & 0.2203 & 0.4222 & 0.0229 & 0 \\
\hline Longline Mackerel & 0.0026 & 0.0192 & 0.1334 & 0.0046 & 0.0022 & 0.0481 & 0.7862 & 0.0037 & 0 \\
\hline \begin{tabular}{l} 
Beam trawl \\
demersal
\end{tabular} & 0.0000 & 0.0103 & 0.5558 & 0.0516 & 0.0000 & 0.1579 & 0.2183 & 0.0061 & 0 \\
\hline Demersal seine & 0.0108 & 0.0417 & 0.2481 & 0.0393 & 0.0157 & 0.2316 & 0.3695 & 0.0433 & 0 \\
\hline \begin{tabular}{l} 
Demersal otter \\
trawl
\end{tabular} & 0.0038 & 0.0055 & 0.0791 & 0.0868 & 0.0096 & 0.3050 & 0.4735 & 0.0367 & 0 \\
\hline \begin{tabular}{l} 
Longline \& gillnets \\
demersal
\end{tabular} & 0.0176 & 0.0115 & 0.3819 & 0.3067 & 0.0097 & 0.0575 & 0.2055 & 0.0096 & 0 \\
\hline \begin{tabular}{l} 
Beam trawl \\
shrimp
\end{tabular} & 0.0000 & 0.0414 & 0.8679 & 0.0612 & 0.0000 & 0.0190 & 0.0102 & 0.0003 & 0 \\
\hline Nephrops trawl & 0.0000 & 0.1137 & 0.0000 & 0.0000 & 0.0000 & 0.8863 & 0.0000 & 0.0000 & 0 \\
\hline Creels \& pots & 0.0148 & 0.0484 & 0.1900 & 0.1670 & 0.0238 & 0.0503 & 0.4214 & 0.0845 & 0 \\
\hline Mollusc dredges & 0.0000 & 0.0114 & 0.2565 & 0.0929 & 0.0000 & 0.0508 & 0.4915 & 0.0969 & 0 \\
\hline \hline \begin{tabular}{l} 
Habitat area \\
proportion
\end{tabular} & 0.0030 & 0.0110 & 0.1878 & 0.0478 & 0.0057 & 0.2665 & 0.4595 & 0.0187 & 0 \\
\hline
\end{tabular}

\section*{Allocation of STECF fish and benthos landings and discards to gear classes}

Full details of the procedures for a) allocating landed and discarded species to StrathE2E2 model guilds, b) allocating landings to gears, and c) allocating discards to gears and statistical rectangles, are described by Heath et al. (2015). Brief summaries of the essential results are presented here.

TABLE 16 2003-2013 average annual live weights landed (tonnes) of each StrathE2E2 fish and invertebrate resource category, by each gear in the fleet model, derived from the combined STECF and Norwegian data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Gear category & Planktivorous fish & Demersal fish & Migratory fish & Suspension/ deposit feeding benthos & Carnivore/ scavenge feeding benthos & Carnivorous zooplankton \\
\hline Pelagic trawls \& seines & 349610 & 237 & 185311 & 0 & 1 & 0 \\
\hline Sandeel \& sprat trawls & 358202 & 571 & 13462 & 1 & 485 & 0 \\
\hline Longline Mackerel & 2 & 11 & 1038 & 0 & 8 & 0 \\
\hline Beam trawl demersal & 1 & 58239 & 51 & 3 & 687 & 0 \\
\hline DemersalSeine & 0 & 25 & 16 & 0 & 0 & 6 \\
\hline Demersal otter trawl & 1338 & 121323 & 3912 & 7 & 1875 & 1850 \\
\hline Longline \& gillnets demersal & 173 & 9177 & 28 & 2 & 50 & 0 \\
\hline Beam trawl shrimp & 152 & 269 & 14 & 0 & 27124 & 0 \\
\hline Nephrops trawl & 6 & 12005 & 133 & 1 & 16706 & 237 \\
\hline Creels \& pots & 1 & 66 & 80 & 8 & 7277 & 0 \\
\hline Mollusc dredges & 32 & 11 & 2 & 4314 & 3 & 0 \\
\hline Totals & 709516 & 201934 & 204046 & 4336 & 54216 & 2093 \\
\hline
\end{tabular}

TABLE 17 2003-2013 average annual live weights discarded (tonnes) of each fish and invertebrate StrathE2E2 resource category, by each gear in the fleet model, derived from STECF
\begin{tabular}{|l|r|r|r|r|r|c|}
\hline Gear category & \begin{tabular}{l} 
Planktivorous \\
fish
\end{tabular} & \begin{tabular}{l} 
Demersal \\
fish
\end{tabular} & \begin{tabular}{l} 
Migratory \\
fish
\end{tabular} & \begin{tabular}{l} 
Suspension/ \\
deposit \\
feeding \\
benthos
\end{tabular} & \begin{tabular}{l} 
Carnivore/ \\
scavenge \\
feeding \\
benthos
\end{tabular} \\
\hline \begin{tabular}{l} 
Pelagic trawls \& \\
seines
\end{tabular} & 1031 & 30 & 10219 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
Sandeel \& sprat \\
trawls
\end{tabular} & 42 & 664 & 118 & 0 & 101 & 0 \\
\hline \begin{tabular}{l} 
Longline \\
Zackerel
\end{tabular} & 0 & \(<1\) & 0 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
Beam trawl \\
demersal
\end{tabular} & 0 & 69626 & 104 & 0 & 121 & 0 \\
\hline DemersalSeine & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
Demersal otter \\
trawl
\end{tabular} & 192 & 109270 & 13080 & \(<1\) & 852 & 0 \\
\hline \begin{tabular}{l} 
Longline \& \\
gillnets \\
demersal
\end{tabular} & 0 & 260 & 9 & 0 & 49 & 0 \\
\hline \begin{tabular}{l} 
Beam trawl \\
shrimp
\end{tabular} & 111 & 8770 & 8 & 0 & 36853 & 0 \\
\hline Nephrops trawl & 4 & 26014 & 104 & 0 & 1070 & 0 \\
\hline Creels \& pots & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline Mollusc dredges & 0 & 10 & 0 & 24 & 0 & 0 \\
\hline Totals & 1380 & 214644 & 23641 & 25 & 39048 & 0 \\
\hline
\end{tabular}

Landings data required to be converted from live wet weight to nitrogen mass for use in the model. The wet weight to nitrogen conversion factors assumed as given in Table 18.

TABLE 18 Nitrogen content ( mMN ) per gram wet weight for living guilds which were assumed for converting landed live weights to nitrogen mass. Where necessary the values were estimated from quoted carbon mass data assuming Redfield molar ratios.
\(\left.\begin{array}{|l|l|l|}\hline \text { Guild } & \begin{array}{l}\text { Nitrogen mass per } \\ \text { unit wet weight } \\ (\mathrm{mMN} . \mathrm{gWW}\end{array} & \text { Source }\end{array}\right)\)

TABLE 19 Discard rates (proportion of catch discarded) by each gear with respect to each resource guild. Values calculated for the period 2003-2013.
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Gear category & \begin{tabular}{l} 
Planktivorous \\
fish
\end{tabular} & \begin{tabular}{l} 
Demersal \\
fish
\end{tabular} & \begin{tabular}{l} 
Migratory \\
fish
\end{tabular} & \begin{tabular}{l} 
Suspension/ \\
deposit \\
feeding \\
benthos
\end{tabular} & \begin{tabular}{l} 
Carnivore/ \\
scavenge \\
feeding \\
benthos
\end{tabular} & \begin{tabular}{l} 
Carnivorous \\
zooplankton
\end{tabular} \\
\hline \begin{tabular}{l} 
Pelagic trawls \& \\
seines
\end{tabular} & 0.003 & 0.112 & 0.052 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
Sandeel \& sprat \\
trawls
\end{tabular} & 0 & 0.538 & 0.009 & 0 & 0.173 & 0 \\
\hline \begin{tabular}{l} 
Longline \\
Mackerel
\end{tabular} & 0 & 0.005 & 0 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
Beam trawl \\
demersal
\end{tabular} & 0 & 0.545 & 0.671 & 0.014 & 0.150 & 0 \\
\hline DemersalSeine & 0 & 0 & 0 & 0 & 0.000 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Demersal otter \\
trawl
\end{tabular} & 0.126 & 0.474 & 0.770 & 0.022 & 0.313 & 0 \\
\hline \begin{tabular}{l} 
Longline \& \\
gillnets \\
demersal
\end{tabular} & 0 & & & & & 0 \\
\hline \begin{tabular}{l} 
Beam trawl \\
shrimp
\end{tabular} & 0.422 & 0.970 & 0.366 & 0 & 0.498 & \\
\hline Nephrops trawl & 0.380 & 0.684 & 0.439 & 0 & 0.576 & 0 \\
\hline Creels \& pots & 0.056 & 0.008 & 0.001 & 0 & 0.060 & 0 \\
\hline Mollusc dredges & 0 & 0.477 & 0 & 0.006 & 0 & 0 \\
\hline
\end{tabular}

TABLE 20 Catching power ( \(\mathrm{mMN} \mathrm{s}^{-1}\) ) of each gear with respect to each fish and invertebrate resource guild in the ecology model for the period 2003-2013. Values calculated as the ratio of catch rate : activity rate for each gear.
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline Gear category & \begin{tabular}{l} 
Planktivorous \\
fish
\end{tabular} & \begin{tabular}{l} 
Demersal \\
fish
\end{tabular} & \begin{tabular}{l} 
Migratory \\
fish
\end{tabular} & \begin{tabular}{l} 
Suspension/ \\
deposit \\
feeding \\
benthos
\end{tabular} & \begin{tabular}{l} 
Carnivore/ \\
scavenge \\
feeding \\
benthos
\end{tabular} & \begin{tabular}{l} 
Carnivorous \\
zooplankton
\end{tabular} \\
\hline \begin{tabular}{l} 
Pelagic trawls \& \\
seines
\end{tabular} & 1932.12 & 0.89 & 1077.41 & 0.00 & 0.00 & 0.00 \\
\hline \begin{tabular}{l} 
Sandeel \& sprat \\
trawls
\end{tabular} & 1013.87 & 2.12 & 38.43 & 0.00 & 0.77 & 0.00 \\
\hline Longline Mackerel & 0.01 & 0.05 & 7.38 & 0.00 & 0.03 & 0.00 \\
\hline \begin{tabular}{l} 
Beam trawl \\
demersal
\end{tabular} & 0.00 & 80.90 & 0.16 & 0.00 & 0.39 & 0.00 \\
\hline Demersal Seine & 0.00 & 10.64 & 10.94 & 0.00 & 0.02 & 5.09 \\
\hline \begin{tabular}{l} 
Demersal otter \\
trawl
\end{tabular} & 0.85 & 77.63 & 9.42 & 0.00 & 0.70 & 1.50 \\
\hline \begin{tabular}{l} 
Longline \& gillnets \\
demersal
\end{tabular} & 0.26 & 8.66 & 0.06 & 0.00 & 0.07 & 0.00 \\
\hline Beam trawl shrimp & 0.25 & 5.18 & 0.02 & 0.00 & 27.91 & 0.00 \\
\hline Nephrops trawl & 0.01 & 16.07 & 0.16 & 0.00 & 5.72 & 0.14 \\
\hline Creels \& pots & 0.00 & 0.02 & 0.04 & 0.00 & 1.68 & 0.00 \\
\hline Mollusc dredges & 0.12 & 0.05 & 0.01 & 5.80 & 0.01 & 0.00 \\
\hline
\end{tabular}

TABLE 21 Catching power ( \(\mathrm{mMN} \mathrm{s}{ }^{-1}\) ) of each gear with respect to each fish and invertebrate resource guild in the ecology model for the period 1970-1999. Values calculated from the 2003-2013 data (Table 20) by assuming a \(2 \%\) per year increase in power (Engelhard, 2008; Palomares \& Pauly, 2019) for each gear/guild combination. The arithmetic mean power during 1970-1999 was thus estimated to be 0.65359 * the mean power during 2003-2013.
\begin{tabular}{|l|r|r|l|l|r|r|}
\hline Gear category & \begin{tabular}{l} 
Planktivorous \\
fish
\end{tabular} & \begin{tabular}{l} 
Demersal \\
fish
\end{tabular} & \begin{tabular}{l} 
Migratory \\
fish
\end{tabular} & \begin{tabular}{l} 
Suspension/ \\
deposit \\
feeding \\
benthos
\end{tabular} & \begin{tabular}{l} 
Carnivore/ \\
scavenge \\
feeding \\
benthos
\end{tabular} & \begin{tabular}{l} 
Carnivorous \\
zooplankton
\end{tabular} \\
\hline \begin{tabular}{l} 
Pelagic trawls \& \\
seines
\end{tabular} & 1262.81 & 0.58 & 704.19 & 0.00 & 0.00 & 0.00 \\
\hline \begin{tabular}{l} 
Sandeel \& sprat \\
trawls
\end{tabular} & 662.65 & 1.39 & 25.12 & 0.00 & 0.50 & 0.00 \\
\hline Longline Mackerel & 0.01 & 0.03 & 4.82 & 0.00 & 0.02 & 0.00 \\
\hline \begin{tabular}{l} 
Beam trawl \\
demersal
\end{tabular} & 0.00 & 52.87 & 0.11 & 0.00 & 0.25 & 0.00 \\
\hline Demersal Seine & 0.00 & 6.95 & 7.15 & 0.00 & 0.01 & 3.33 \\
\hline \begin{tabular}{l} 
Demersal otter \\
trawl
\end{tabular} & 0.55 & 50.74 & 6.16 & 0.00 & 0.46 & 0.98 \\
\hline \begin{tabular}{l} 
Longline \& gillnets \\
demersal
\end{tabular} & 0.17 & 5.66 & 0.04 & 0.00 & 0.05 & 0.00 \\
\hline Beam trawl shrimp & 0.16 & 3.38 & 0.01 & 0.00 & 18.24 & 0.00 \\
\hline Nephrops trawl & 0.00 & 10.50 & 0.11 & 0.00 & 3.74 & 0.09 \\
\hline Creels \& pots & 0.00 & 0.01 & 0.03 & 0.00 & 1.10 & 0.00 \\
\hline Mollusc dredges & 0.08 & 0.03 & 0.00 & 3.79 & 0.00 & 0.00 \\
\hline
\end{tabular}

\section*{Processing of catch at sea and production of offal}

The proportion of the catch of each resource guild which is processed at sea aboard each gear group was estimated roughly from market sampling data (proportion of landing as whole vs gutted fish) and expert knowledge (Table 22). The proportion of live weight discarded as offal as a result of processing was estimated to be \(10 \%\).

TABLE 22 Processing-at-sea proportions for each gear with respect to each fish and invertebrate resource guild in the ecology model.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Gear category & \begin{tabular}{l} 
Planktivorous \\
fish
\end{tabular} & \begin{tabular}{l} 
Demersal \\
fish
\end{tabular} & \begin{tabular}{l} 
Migratory \\
fish
\end{tabular} & \begin{tabular}{l} 
Suspension/ \\
deposit \\
feeding \\
benthos
\end{tabular} & \begin{tabular}{l} 
Carnivore/ \\
scavenge \\
feeding \\
benthos
\end{tabular} & \begin{tabular}{l} 
Carnivorous \\
zooplankton
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline \begin{tabular}{l} 
Pelagic trawls \& \\
seines
\end{tabular} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
Sandeel \& sprat \\
trawls
\end{tabular} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Longline Mackerel & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
Beam trawl \\
demersal
\end{tabular} & 0 & 0.5 & 0 & 0 & 0 & 0 \\
\hline Demersal Seine & 0 & 0.5 & 0 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
Demersal otter \\
trawl
\end{tabular} & 0 & 0.5 & 0 & 0 & 0 & 0 \\
\hline \begin{tabular}{l} 
Longline \& gillnets \\
demersal
\end{tabular} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Beam trawl shrimp & 0 & 0 & 0 & 0 & 0.8 & 0 \\
\hline Nephrops trawl & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Creels \& pots & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Mollusc dredges & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Scaling parameters relating effort to harvest ratio for fish and invertebrate guilds in the model}

The parameters linking effort (activity x power) of any gear in the fleet model to harvest ratios in the ecology model are key terms in the coupled system. To estimate these independently we need estimates of the integrated harvest ratios for each of the living resource guilds in the ecology model to compare with the integrated effort across all the gears in the fleet model.

\section*{Finfish harvest ratios}

The approach to estimating fish harvest ratios was a refinement of that outlined by Heath (2012). Annual species-specific total stock biomass data from the analytical assessments conducted by the International Council for the Exploration of the Sea (ICES) were assembled for the period 1960-onwards where possible. For the North Sea these data are available for only the major commercial species but these constitute a high proportion of the community biomass of the guilds of fish in the model (planktivorous: herring, sandeel, Norway pout; demersal: cod, haddock, whiting, plaice, saithe, sole; migratory: mackerel). Assessments have commenced at different times for the various species, with plaice, cod, haddock and herring being the longest-running series. Data-gaps in the early years were filled by extrapolating back in time from the first assessed year using independent trawl survey data as an index of population biomass. In addition, the age at first inclusion in the
assessment varied between 3 and 9 months depending on species, so a compensatory correction was applied to bring the biomasses of all species into line.

Annual catches of each of the assessed species were constructed from the sum of landings and discards as provided in the ICES stock assessment reports. Where discard data were absent, values were filled in from a statistical reconstruction of discard histories for the North Sea (Heath \& Cook, 2015), or prior to 1980 by extrapolating the discard rate (proportion of catch discarded).

The whole-guild biomass of each guild was estimated by up-scaling the combined biomass of the assessed species, using a ratio of all-species to assessed species biomass derived from independent trawl surveys. Finally, the annual harvest ratios for each fish guild were determined from whole-guild biomasses and catches across all the species representing each guild;.

The estimated harvest ratios for both planktivorous and demersal fish increased from the 1960s to the 1970s and remained high during the 1990s. During the 2000s harvest ratios decreased towards low levels by 2010 (Figure 7). This pattern is entirely consistent with the changes in fishing mortality reported in the ICES Greater North Sea Eco-region review (ICES, 2016). ICES determined that fishing mortality rates during the period 1970-1999 were around 2 -times \(\mathrm{F}_{\text {MSY }}\) (the fishing mortality associated with maximum steady state catch) for demersal fish, and 1.01.3 -times \(\mathrm{F}_{\text {MSY }}\) for pelagic fish. The ratio \(\mathrm{F} / \mathrm{F}_{\text {Msy }}\) does not necessarily correspond to \(\mathrm{HR} / \mathrm{HR}_{\text {MSY }}\), but we can be certain that average harvest ratios during this period (1970-1999) were in excess of \(\mathrm{HR}_{\text {MSY }}\), especially for demersal fish.

\section*{Benthic invertebrate harvest ratios}

There are no stock assessments for invertebrates of comparable detail to those for finfish. This is partly due to the inability to reliably determine the age of individuals, so that there is a lack of data to support age-based population dynamics approaches. The most detailed assessments are for Norway lobster (Nephrops norvegicus) where television surveys are used to provide fishery-independent data on stock biomass. Some degree of assessment is available for Atlantic scallop and brown shrimp, but very little for other benthic crustaceans and molluscs, or for squids. Based on the time-series of Norway lobster stock and landings we estimated the harvest ratios for carnivorous/scavenge feeding benthic invertebrates (Figure 7), and assumed that these apply also to other invertebrates.

The ICES North Sea Eco-region review (ICES, 2016) determined that fishing mortality rates for invertebrates have risen steadily from around 0.3 -times \(\mathrm{F}_{\text {msy to }} 1.25\)-times \(\mathrm{F}_{\text {msy }}\) between 1970 and 2010. This synopsis largely reflects the trend in landings over the period.


FIGURE 7 Time series of harvest ratio (proportion of biomass removed per day) for guilds of fish and benthic crustaceans in the North Sea. Data compiled from analyses of stock assessments, trawl survey data and with reference to ICES (2016).

\section*{Parameterisation of selectivity and harvest ratios for top predators.}

In addition to the power parameters and the effort-harvest ratio scaling parameters defining the selectivity of each gear for fish and invertebrate guilds in the model, as outlined above, we also require equivalent parameters defining the unintended by-catch of the top-predator guilds (birds, pinnipeds, cetaceans) by these gears. There is no one simple source of data, equivalent to STECF, from which these parameters can be calculated, so we drew on data from a variety of sources:

First, we required data on the biomass of each top-predator guild in the North Sea, which we sourced from:
- Atlas of bird and cetacean species spatial abundances developed by statistical modelling of observer line-survey data on seabirds-atsea and cetacean abundances (pers.comm, Dr James Waggitt \& Dr Peter Evans, Bangor University; Waggitt et al., 2019)
- Periodic assessments of grey and common seal population numbers in UK and European waters (Sea Mammal Research Unit (SMRU) \& Marine Scotland, 2017)

Data on by-catch rates were sourced as follows:
- Records of strandings of cetaceans around the UK including pathology data on the likely cause of death (Deaville \& Jepson, 2011). These data were used to identify cetaceans which had died as a result of entanglement in ropes - which we assumed to be predominantly creel lines.
- Synthesis of data on numbers of cetaceans entangled in fishing gears from national returns to ICES (e.g. ICES, 2015a,b, 2018), and summaries by ASCOBANS (Agreement on the Conservation of Small Cetaceans of the Baltic, North East Atlantic, lrish and North Seas, www.ascobans.org).
- Literature on cetacean by-catch (Bjorge et al., 1994, 2013; Brown et al., 2013; Dawson et al., 2013; Evans \& Hinter, 2013; Hammond et al., 2002; Kaschner, 2003; Larsen \& Eigaard, 2014; Morizur et al., 1999; Northridge and Hammond, 1999; Northridge et al., 2005, 2010; Pierce et al., 2010; Read et al., 2006; Ryan et al., 2016; Vinther, 1995, 1999; Vinther and Larsen, 2004)
- Literature on seal by-catch (Cosgrove et al., 2016)
- Literature on seabird by-catch (Anderson et al., 2011; Genovart et al., 2017; ICES, 2013b; Tasker et al., 2000; Wiedenfeld et al., 2012; Zydelis et al., 2013)

Data on the activity rates of gears generating by-catch were as detailed in the preceding sections, based on the STECF database. The bird, pinniped and cetacean by-catch data to accompany these activity rates were assembled almost entirely from partial estimates for national fleet segments of particular gears, from a range of regions (not just the North Sea). For each ICES/FAO statistical region in the NE Atlantic where we were able to locate such data, we extracted the population biomass, the activity rate of the particular national fleet, and the corresponding species by-catch. From these data, we calculated a partial harvest ratio, and an activity density (activity per unit area) for the fleet segment. Finally, we combined all the individual records for a given species (partial harvest ratio and activity density) as a scatter-plot and fitted a linear regression forced through the origin ( 0,0 ). The slope of this regression represents the scaling coefficient between activity density and harvest ratio, which we assume to be fixed over time and regions. Finally, the individual species coefficients, harvest ratios and by-catch rates were aggregated up to guild-level, weighted by the estimates of species biomass in the North Sea (Tables 23-25). In effect, use of these activityharvest ratio scaling parameters in the fishing fleet model assumes that each gear has a notional power of 1.0 for each vulnerable guild of toppredators.

TABLE 23 Fishing gears for which there are quantitative data on by-catch weights of particular species of top-predators, together with North Sea guild-aggregated scaling parameters linking regionally averaged activity density (sec. \(\mathrm{m}^{-2} . \mathrm{d}^{-1}\) ) and regional harvest ratio ( \(\mathrm{d}^{-1}\) ).
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Gear & \begin{tabular}{l} 
Vulnerable seabird \\
species
\end{tabular} & \begin{tabular}{l} 
Vulnerable \\
pinniped species
\end{tabular} & \begin{tabular}{l} 
Vulnerable \\
cetacean species
\end{tabular} & \begin{tabular}{l} 
Seabird \\
scaling parameter
\end{tabular} & \begin{tabular}{l} 
Pinniped \\
scaling parameter
\end{tabular} & \begin{tabular}{l} 
Cetacean \\
scaling parameter
\end{tabular} \\
\hline \begin{tabular}{l} 
Demersal \\
gillnets
\end{tabular} & \begin{tabular}{l} 
Guillemot, razorbill, \\
fulmar, gannet
\end{tabular} & Grey seal & \begin{tabular}{l} 
Common dolphin, \\
striped dolphin, \\
harbour porpoise
\end{tabular} & 0.011 & 1.812 \\
\hline Pelagic & Gannet & Common dolphin, & 0.175 & 0.750 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
trawl and \\
seine
\end{tabular} & & & \begin{tabular}{l} 
bottlenose dolphin, \\
striped dolphin, \\
pilot whale
\end{tabular} & & \\
\hline \begin{tabular}{l} 
Pelagic \\
longlines
\end{tabular} & Fulmar & & & 0.085 & \\
\hline \begin{tabular}{l} 
Creels \& \\
pots
\end{tabular} & & & \begin{tabular}{l} 
Fin whale, Minke \\
whale
\end{tabular} & & 0.033 \\
\hline
\end{tabular}

TABLE 24 2003-2013 annual average partial harvest ratio \(\left(\mathrm{d}^{-1}\right)\), of the three top-predator guilds in the North Sea by each of the relevant fishing gear groups in the model.
\begin{tabular}{|l|l|l|l|}
\hline Gear & Seabird harvest ratio & Pinniped harvest ratio & Cetacean harvest ratio \\
\hline Demersal gillnets & \(7.07 \times 10^{-8}\) & \(4.97 \times 10^{-6}\) & \(1.20 \times 10^{-5}\) \\
\hline Pelagic trawl \& seine & \(4.02 \times 10^{-7}\) & & \(8.40 \times 10^{-8}\) \\
\hline Pelagic longlines & \(1.21 \times 10^{-7}\) & & \\
\hline Creels \& pots & & & \(8.33 \times 10^{-7}\) \\
\hline
\end{tabular}

TABLE 25 2003-2013 annual by-catch rates ( \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) ) of the three top-predator guilds in the North Sea by all fishing gears combined.
\begin{tabular}{|l|l|l|}
\hline Seabird by-catch & Pinniped by-catch & Cetacean by-catch \\
\hline \(6.25 \times 10^{-7}\) & \(2.74 \times 10^{-5}\) & \(2.75 \times 10^{-4}\) \\
\hline
\end{tabular}

Clearly, the methodology outlined above is an approximation since, for example, it disregards the relative spatial distributions of animals and fishing gear activity within the North Sea and how this many vary seasonally. Also, the national by-catch data are almost certainly partial. However, we do not regard the results as a definitive study, merely a pragmatic approach which is sufficient for the purposes of parameterising the coarse-scale StrathE2E2 model.

\section*{Directed whaling catch in the North Sea}

In addition to the unintended by-catch of cetaceans by fishing gears, there is a small-scale targeted catch of Minke whales in the Norwegian sector of the region under objection to the International Whaling Commission zero catch limits. We obtained spatially resolved ( \(1^{\circ}\) longitude x \(1 / 2^{\circ}\) latitude) annual catch weights during 2003-2013 from the Norwegian Directorate of Fisheries and, using the Minke whale population biomass data as outlined above in the description of by-catch estimation, we estimated the annual harvest ratio. In order to represent this whaling activity in the model, we designated an additional fishing gear "Norwegian whalers", which has no interaction with any other aspect of
the ecosystem except the cetacean guild. This meant that we could assign this fleet a notional activity density during 2003-2013 and a power or 1.0, and derive the scaling parameter linking activity density of the whalers to the harvest ratio (Table 26).

TABLE 26 2003-2013 annual average Minke whale by-catch rate in the North Sea, harvest ratio, and the derived parameter linking activity density of "Norwegian whalers" to harvest ratio assuming a notional activity density of 1000 hours per year.
\begin{tabular}{|l|l|}
\hline 2003-2013 annual average Minke whale catch & 67 tonnes \(=8.38 \times 10^{-5} \mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) \\
\hline Harvest ratio \(\left(\mathrm{d}^{-1}\right)\) & \(4.17 \times 10^{-6}\) \\
\hline \begin{tabular}{l} 
Scaling parameter linking activity density \(\left(\mathrm{s} . \mathrm{m}^{-2} . \mathrm{d}^{-1}\right)\) \\
to harvest ratio \(\left(\mathrm{d}^{-1}\right)\)
\end{tabular} & 210.31 \\
\hline
\end{tabular}

We did not have access to annual Minke whale catch data prior to 2003, so we roughly estimated the catches in earlier years by assuming that North Sea catches have varied in proportion to the total Norwegian catch in the NE Atlantic (1986-onwards data compiled from the IWC www.iwc.int/table_objection). On this basis, the 1986-1999 average catch in the North Sea was estimated to be 32 tonnes per year.

\section*{Parameterisation of quota-limited/non-quota species composition of demersal fish catches}

For the North Sea, the empirical evidence for density dependent relationships describing catch and discard composition comes from analysis of catch per unit effort data in research vessel trawl surveys carried out in quarter 1 of each year since 1980, and the corresponding species composition of annual commercial landings and discards (Heath \& Cook, 2015). The analysis shows that at the scale of the whole North Sea the proportion of non-quota demersal fish species in the commercial catch has been indirectly related to the community biomass (Figure 8). There may be a number of explanations for this, but most likely is that depletion of the community biomass reflects the selective targeting of the valuable quota-limited species by the fisheries. In the model, we represent this relationship by a negative exponential function.
\(p_{\text {(non-quota) }}=a_{\text {pnq }} \cdot \exp \left(-b_{\text {pnq }} \cdot N_{\text {dem.fish }}\right) \quad\) eqn 9
where \(b_{\text {pnq }}\) is a scaling parameter, and ( \(N_{\text {dem.fisht }}\) ) is the survey-based demersal fish biomass per unit swept area ( \(\mathrm{mMN} . \mathrm{m}^{-2}\) ), as measured on \(1^{\text {st }}\) January. The survey data were converted to nitrogen units by applying species-specific wet-weight to length relationships to the individual species number density-at-length data, and summing over all demersal species (Heath \& Cook, 2015). Then, we assumed a nominal catching efficiency for the survey gear of \(20 \%\) (Fraser et al., 2007), and a wet-weight to nitrogen conversion of \(1.34 \mathrm{mMN} . \mathrm{g}-\mathrm{WW}^{-1}\)

Capture efficiency of the survey trawl is only approximately known, so to facilitate incorporation of this relationship in the model we included a proportionality constant ( \(\varphi\) ) to relate survey catch per unit swept area to nitrogen mass per unit sea surface area ( \(M_{\text {dem.fish }}\) ) as simulated in the model:
\(p_{\text {(non-quota) }}=a_{\text {pnq }} \cdot \exp \left(-b_{p n q} \cdot \varphi \cdot M_{\text {dem.fish }}\right)\) eqn 10


FIGURE 8 Proportion by weight of non-quota species in commercial catches from the North Sea, 1989-2010, in relation to the total biomass density of the demersal fish community as estimated in the corresponding year by the ICES IBTS quarter 1 surveys. Fitted equation: \(p_{\text {(non-quota) }}=\) \(a_{\text {pnq }} \cdot \exp \left(-b_{\text {pnq }} \cdot N_{\text {dem.fish }}\right), a_{\text {pnq }}=0.16, b_{\text {pnq }}=0.07 ; p<0.05\).

\section*{Parameterisation of the proportion of demersal fish catch which is smaller than the legal or de-facto marketable landing size.}

The prototype version of StrathE2E2 included an empirically parameterised relationship between the proportion of demersal fish in commercial catches which were discarded on account of being undersize, and the biomass of demersal fish in the sea. The relationship expressed an exponentially declining discard rate with increasing biomass:
\(p_{\text {(discarded) }}=a_{\text {disc }} \cdot \exp \left(-b_{\text {disc }} \cdot M_{\text {dem.fish }}\right)\)
eqn 11
The general form of this relationship is retained in the new version of the model, but separate parameters are needed for the quota-limited and non-quota fractions of the demersal fish catch.

Technically, there is no minimum legal landing size for non-quota species. However, there is a de-facto minimum marketable size, below which there is no incentive to land the fish. Combined analysis of the 1980-2010 North Sea survey, landings and discards data (Heath \& Cook, 2015) has shown that the average proportion by weight of non-quota species in the commercial catches which is below the marketable size, is approximately double the corresponding proportion of quota-limited species smaller than the minimum legal landing size. In addition, for both groups, these proportions have varied in inverse relation to demersal fish community biomass (Figure 9). The explanation for these density dependent relationships lies in the observed decrease in mean body size of demersal fish with declining community biomass. This is typically summarised for ecosystem assessment purposes by the Large Fish Indicator (LFI) which, in the North Sea, is defined as the proportion by weight of fish in the community which are larger than 40 cm in length (Greenstreet et al., 2011; Modica et al., 2014).

The data from the North Sea showed that the exponents, or slopes, of the negative exponential relationships defining the proportion by weight of fish smaller than the minimum landing size (corresponding roughly to the historic discard rates) were not significantly different between the quota-limited and non-quota groups. However, the intercept term is substantially higher for the non-quota group.
```

$p_{\text {(undersize)Q }}=a_{\text {undersizeQ }} \cdot \exp \left(-b_{\text {undersizeQ }} \cdot N_{\text {dem.fish }}\right)($ for quota limited catch $) \quad$ eqn 12

```
\(p_{\text {(undersize) } N Q}=a_{\text {undersizeNQ }} \cdot \exp \left(-b_{\text {undersizeNQ }} \cdot N_{\text {dem.fish }}\right)\) (for non-quota limited catch) eqn 13



FIGURE 9 Proportions by weight of under minimum or marketable landing size demersal fish in the commercial catch from the North Sea, 1989-2010, in relation to the total biomass density of the demersal fish community as estimated in the corresponding year by the ICES IBTS quarter 1 surveys. Upper panel, quota-limited species, lower panel, non-quota species. Fitted equations of the form: \(p_{\text {(undersize) }}=a_{\text {undersize }} \cdot \exp (-\) \(b_{\text {undersize }}\). \(N_{\text {dem.fish }}\) ). Separate fits for the quota and non-quota species showed that the coefficients \(\mathrm{b}_{\text {undersize }}\) were not significantly different ( \(\mathrm{p}<0.05\) ). Refitting assuming a common value for this parameter resulted in, for quota-limited species, \(a_{\text {(undersize) } Q}=0.40, b_{\text {(undersize) }}=0.02\); and for non-quota species, \(a_{(\text {undersize) } N Q}=0.67, b_{(\text {undersize) } N Q}=0.02\).

As for the imputation of non-quota fraction in the catch, we include the same scaling coefficient linking the survey catch per unit swept area and the biomass density in the model
\(N_{\text {dem.fish }}=\varphi \cdot M_{\text {dem.fish }}\)

\section*{Observational data for model fitting}

Observational data on conditions in the North Sea during the periods 1970-1999 and 2003-2013 were assembled from a range of literature and data analyses (Table 27, 28). The data assembly by Mackinson \& Daskalov (2007) was a key source of information for 1970-1999. In each case the information was such that an equivalent measure could be derived for comparison from the final year of a run to stationary state of the model.

TABLE 27 Observational data on the conditions in the North Sea relevant to the period 1970-1999, or a general value where no period-specific data were available. The standard deviation of the observed data was in some cases based on an actual analysis of multi-year data (e.g. in the case of fishery landings). In other case the standard deviation was a rough estimate based on very few data, or just a scaled value relative to the mean to assign a weighting to a particular measure in the likelihood calculation.
\begin{tabular}{|l|l|l|l|l|l|}
\hline Description & Sources & Mean value & s.d. of value & Units & Notes \\
\hline Annual total primary production & Skogen \& Moll (2005) & 1522 & 150.94 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline \begin{tabular}{l} 
Annual new production from \\
drawdown of depth integrated \\
nitrate plus summer river and \\
atmospheric nitrate inputs
\end{tabular} & Heath \& Beare (2008) & 624.4 & 66.4 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline \begin{tabular}{l} 
Annual within forest net \\
production of kelp
\end{tabular} & Burrows et al. (2018) & 600 & 100 & \(\mathrm{gC} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & General value \\
\hline \begin{tabular}{l} 
Annual omnivorous \\
zooplankton gross production
\end{tabular} & \begin{tabular}{l} 
Heath (2005); \\
Mackinson \& Daskalov \\
(2007)
\end{tabular} & 339.6 & 25.16 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline \begin{tabular}{l} 
Annual carnivorous \\
zooplankton gross production
\end{tabular} & \begin{tabular}{l} 
Heath (2005); \\
Mackinson \& Daskalov \\
(2007)
\end{tabular} & 44.35 & 2.516 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline \begin{tabular}{l} 
Annual planktivorous fish gross \\
production
\end{tabular} & Heath (2005) & 29.97 & 3.509 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Annual demersal fish gross production & Heath (2005) & 11.5 & 2.277 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual suspension/deposit feeding benthos gross production & Eleftheriou \& Basford (1989); Greenstreet et al. (2007); Heip \& Craeymeersch (1995); Heip et al. (1984, 1989,1992); Kiinitzer et al. (1992); Mackinson \& Daskalov (2007) & 1248 & 449 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual carnivore/scavenge feeding benthos gross production & Eleftheriou \& Basford (1989); Greenstreet et al. (2007); Heip \& Craeymeersch (1995); Heip et al. (1984, 1989,1992); Kiinitzer et al. (1992); Mackinson \& Daskalov (2007) & 21.1 & 7.6 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual net production of birds & Mackinson \& Daskalov (2007) & 8.452E-04 & \(2.00 \mathrm{E}-04\) & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual net production of pinnipeds & Mackinson \& Daskalov (2007) & 7.245E-04 & 3.50e-04 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual net production of cetaceans & Mackinson \& Daskalov (2007) & \(1.691 \mathrm{E}-03\) & 8.00E-04 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual monthly max concentration of benthos suspension/deposit feeder larvae & Lindley \& Kirby (2007); Analysis of Continuous Plankton Recorder data & 1.185 & 0.4421 & mMN.m \({ }^{-3}\) & Period-specific \\
\hline Annual monthly max concentration of benthos carnivore/scavenge feeder larvae & Lindley \& Kirby (2007); Analysis of Continuous Plankton Recorder data & 0.334 & 0.1013 & mMN.m \({ }^{-3}\) & Period-specific \\
\hline Annual consumption of planktivorous fish by fish & \begin{tabular}{l}
Heath (2005); \\
Mackinson \& Daskalov (2007)
\end{tabular} & 23.48 & 9.057 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual consumption of demersal fish by fish & \begin{tabular}{l}
Heath (2005); \\
Mackinson \& Daskalov \\
(2007)
\end{tabular} & 2.138 & 0.503 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Annual consumption of omnivorous zooplankton by fish and fish larvae & Heath (2005, 2007b); Mackinson \& Daskalov (2007) & 92.28 & 13.019 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual consumption of omnivorous zooplankton by carnivorous zooplankton & \begin{tabular}{l}
Heath (2005); \\
Mackinson \& Daskalov
(2007)
\end{tabular} & 60.38 & 25.157 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual consumption of benthos by fish & \begin{tabular}{l}
Heath (2005); \\
Mackinson \& Daskalov
(2007)
\end{tabular} & 12.58 & 6.289 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual food consumption by birds & Bryant \& Doyle (1992); Mackinson \& Daskalov (2007) & 0.6538 & 0.325 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Proportion planktivorous fish in diet of birds & Bryant \& Doyle (1992); Mackinson \& Daskalov (2007) & 0.6 & 0.2 & dimensionless & Period-specific \\
\hline Proportion demersal fish in diet of birds & Bryant \& Doyle (1992); Mackinson \& Daskalov (2007) & 0.1 & 0.05 & dimensionless & Period-specific \\
\hline Proportion migratory fish in diet of birds & Bryant \& Doyle (1992); Mackinson \& Daskalov (2007) & 0.05 & 0.015 & dimensionless & Period-specific \\
\hline Proportion discards in diet of birds & Bryant \& Doyle (1992); Mackinson \& Daskalov (2007) & 0.05 & 0.02 & dimensionless & Period-specific \\
\hline Annual food consumption by pinnipeds & Mackinson \& Daskalov (2007) & 0.2161 & 0.105 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Proportion pelagic fish in diet of pinnipeds & Mackinson \& Daskalov (2007) & 0.2910 & 0.0728 & dimensionless & Period-specific \\
\hline Proportion demersal fish in diet of pinnipeds & Mackinson \& Daskalov (2007) & 0.6969 & 0.1742 & dimensionless & Period-specific \\
\hline Proportion migratory fish in diet of pinnipeds & Mackinson \& Daskalov (2007) & 0.01208 & 0.0030 & dimensionless & Period-specific \\
\hline Annual food consumption by cetaceans & Mackinson \& Daskalov (2007) & 0.9691 & 0.48 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Proportion pelagic fish in diet of cetaceans & Mackinson \& Daskalov (2007); Olsen \& Holst (2001) & 0.6632 & 0.1658 & dimensionless & Period-specific \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Proportion demersal fish in diet of cetaceans & Mackinson \& Daskalov (2007); Olsen \& Holst (2001) & 0.0995 & 0.04 & dimensionless & Period-specific \\
\hline Proportion migratory fish in diet of cetaceans & Mackinson \& Daskalov (2007); Olsen \& Holst (2001) & 0.08014 & 0.035 & dimensionless & Period-specific \\
\hline Annual planktivorous fish landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 5.555 & 0.2 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual demersal fish landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 1.735 & 0.08 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual migratory fish landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 0.775 & 0.308 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual suspension/deposit feeding benthos landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 0.0953 & 0.0382 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual carnivore/scavenge feeding benthos landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 0.0829 & 0.0169 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot y^{-1}\) & Period-specific \\
\hline Annual carnivorous zooplankton landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 0.00147 & \(9.32 \mathrm{E}-04\) & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual kelp landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 0 & 0 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual carbon gross PB ratio of kelp & Brady-Campbell et al.
(1984) & 2 & 0.5 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio larvae of suspension/deposit feeding benthos & Mackinson \& Daskalov (2007) & 10 & 5 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio larvae of carnivore/scavenge feeding benthos & Mackinson \& Daskalov (2007) & 10 & 5 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio suspension/deposit feeding benthos & Mackinson \& Daskalov (2007) & 10 & 3 & \(y^{-1}\) & General value \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Annual gross PB ratio carnivore/scavenge feeding benthos & Mackinson \& Daskalov (2007) & 1.2 & 1 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio omnivorous zooplankton & Mackinson \& Daskalov (2007) & 20 & 10 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio carnivorous zooplankton & Mackinson \& Daskalov (2007) & 5 & 1.315 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio larvae of planktivorous fish & Mackinson \& Daskalov (2007) & 4 & 2 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio larvae of demersal fish & Mackinson \& Daskalov (2007) & 4 & 2 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio planktivorous fish & Mackinson \& Daskalov (2007) & 1.72 & 0.86 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio demersal fish & Mackinson \& Daskalov (2007) & 0.88 & 0.44 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio migratory fish & Mackinson \& Daskalov (2007) & 1.3 & 0.6 & \(y^{-1}\) & General value \\
\hline Annual net PB ratio birds & Mackinson \& Daskalov (2007) & 0.28 & 0.14 & \(\mathrm{y}^{-1}\) & General value \\
\hline Annual net PB ratio pinnipeds & Mackinson and Daskalov 2007 & 0.09 & 0.045 & \(y^{-1}\) & General value \\
\hline Annual net PB ratio cetaceans & Mackinson \& Daskalov (2007) & 0.02 & 0.01 & \(y^{-1}\) & General value \\
\hline Annual average proportion of kelp C uptake which is exuded & Abdullah \& Fredriksen (2004) & 0.3 & 0.1 & dimensionless & General value \\
\hline Annual average molar NC ratio of kelp & Broch \& Slagstad (2012); Sjotun et al.
(1996) & 0.12 & 0.2 & dimensionless & General value \\
\hline Annual denitrification & Brion et al. (2004) & 129 & 42 & mMN.m \({ }^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Proportion of demersal fish catch discarded & Heath \& Cook (2015) & 0.37 & 0.075 & dimensionless & Period-specific \\
\hline Annual average ammonia concentration in porewater of sand grain size 0.25 mm & Serpetti (2012); Serpetti et al. (2016) & 19.24 & 9 & mMN.m \({ }^{-3}\) & General value \\
\hline Annual average ammonia concentration in porewater of mud grain size 0.12 mm & Serpetti (2012); Serpetti et al. (2016) & 63.45 & 22 & mMN.m \({ }^{-3}\) & General value \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Annual average nitrate concentration in porewater of sand grain size 0.25 mm & Serpetti (2012); Serpetti et al. (2016) & 4.15 & 2 & mMN.m \({ }^{-3}\) & General value \\
\hline Annual average nitrate concentration in porewater of mud grain size 0.12 mm & Serpetti (2012); Serpetti et al. (2016) & 2.34 & 1 & mMN.m \({ }^{-3}\) & General value \\
\hline Annual average organic N content of sand grain size 0.25 mm ( \(0.19-0.43 \mathrm{~mm}\) ) & Serpetti (2012); Serpetti et al. (2016) & 0.05152 & 0.02441 & \%N (gN.(g dry sed) \({ }^{-1}\) ) & General value \\
\hline Annual average organic N content of mud grain size 0.12 mm ( \(0.03-0.07 \mathrm{~mm}\) ) & Serpetti (2012); Serpetti et al. (2016) & 0.07357 & 0.0343 & \% N ( \(\mathrm{gN} .(\mathrm{g} \mathrm{dry} \mathrm{sed})^{-1}\) ) & General value \\
\hline Average winter (Nov-Feb) nitrate concentration shallow layer & Analysis of ICES hydrochemical data & 9.998 & 2.135 & mMN.m \({ }^{-3}\) & Period-specific \\
\hline Average summer (May-Aug) nitrate concentration shallow layer & Analysis of ICES hydrochemical data & 2.161 & 1.089 & mMN. \(\mathrm{m}^{-3}\) & Period-specific \\
\hline Average winter (Nov-Feb) nitrate concentration deep layer & Analysis of ICES hydrochemical data & 6.995 & 0.836 & mMN.m \({ }^{-3}\) & Period-specific \\
\hline Average summer (May-Aug) nitrate concentration deep layer & Analysis of ICES hydrochemical data & 2.837 & 0.917 & mMN.m \({ }^{-3}\) & Period-specific \\
\hline Average winter (Nov-Feb) ammonia concentration shallow layer & Analysis of ICES hydrochemical data & 2.367 & 0.774 & mMN.m \({ }^{-3}\) & Period-specific \\
\hline Average summer (May-Aug) ammonia concentration shallow layer & Analysis of ICES hydrochemical data & 1.737 & 0.669 & mMN.m \({ }^{-3}\) & Period-specific \\
\hline Average winter (Nov-Feb) ammonia concentration deep layer & Analysis of ICES hydrochemical data & 0.853 & 0.32 & mMN.m \({ }^{-3}\) & Period-specific \\
\hline Average summer (May-Aug) ammonia concentration deep layer & Analysis of ICES hydrochemical data & 1.338 & 0.708 & mMN.m \({ }^{-3}\) & Period-specific \\
\hline Inshore offshore ratio of annual mean carnivorous zooplankton & Analysis of Continuous Plankton Recorder data & 0.9041 & 0.2 & dimensionless & Period-specific \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline depth averaged concentration & & & & & \\
\hline Inshore offshore ratio of annual mean omnivorous zooplankton depth averaged concentration & Analysis of Continuous Plankton Recorder data & 1.676 & 0.2715 & dimensionless & Period-specific \\
\hline Inshore offshore ratio of annual mean phytoplankton surface layer concentration & Analysis of ICES hydrochemical data & 3.744 & 1 & dimensionless & Period-specific \\
\hline Inshore offshore ratio of annual mean nitrate surface layer concentration & Analysis of ICES hydrochemical data & 3.000 & 1 & dimensionless & Period-specific \\
\hline Inshore offshore ratio of annual mean ammonia surface layer concentration & Analysis of ICES hydrochemical data & 2.4294 & 0.9 & dimensionless & Period-specific \\
\hline Inshore offshore ratio of annual mean planktivorous fish density ( \(\mathrm{m}^{-2}\) ) & Analysis of ICES International Bottom Trawl Survey data and Stock Assessment Working Group reports & 0.67 & 0.49 & dimensionless & Period-specific \\
\hline Inshore offshore ratio of annual mean demersal fish density ( \(\mathrm{m}^{-2}\) ) & Analysis of ICES International Bottom Trawl Survey data and Stock Assessment Working Group reports & 0.39 & 0.31 & dimensionless & Period-specific \\
\hline Annual bycatch of birds & Insufficient data available & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & NA \\
\hline Annual bycatch of pinnipeds & Insufficient data available & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & NA \\
\hline Annual bycatch of cetaceans & Insufficient data available & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & NA \\
\hline Proportion of kelp annual nitrogen uptake exported as beach-cast & Zemke-White et al. (2005) & 0.15 & 0.05 & dimensionless & General value \\
\hline Cetacean (Minke whale) catch & Analysis of data from Norwegian Directorate of Fisheries and International Whaling Commission & 4.05E-05 & \(2.00 \mathrm{E}-05\) & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline
\end{tabular}

TABLE 28 Observational data on the conditions in the North Sea relevant to the period 2003-2013, or a general value where no period-specific data were available. The standard deviation of the observed data was in some cases based on an actual analysis of multi-year data (e.g. in the case of fishery landings). In other case the standard deviation was a rough estimate based on very few data, or just a scaled value relative to the mean to assign a weighting to a particular measure in the likelihood calculation. For many fields, no period specific data were available for 2003-2013 or have not yet been processed for use in the model.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Description & Sources & Mean value & s.d. of value & Units & Notes \\
\hline Annual total primary production & Skogen \& Moll (2005) & 1522 & 150.94 & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & General value \\
\hline Annual new production from drawdown of depth integrated nitrat, plus summer river and atmospheric nitrate inputs & Heath \& Beare (2008) & 672.8 & 73.0 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific (partial) \\
\hline Annual within forest net production of kelp & Burrows et al. (2018) & 600 & 100 & \(\mathrm{gC} . \mathrm{m}^{-2} \cdot y^{-1}\) & General value \\
\hline Annual omnivorous zooplankton gross production & \begin{tabular}{l}
Heath (2005); \\
Mackinson \& Daskalov (2007)
\end{tabular} & 339.6 & 25.157 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific (partial) \\
\hline Annual carnivorous zooplankton gross production & NA & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual planktivorous fish gross production & NA & NA & NA & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual demersal fish gross production & NA & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual suspension/deposit feeding benthos gross production & NA & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual carnivore/scavenge feeding benthos gross production & NA & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual net production of birds & NA & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual net production of pinnipeds & NA & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual net production of cetaceans & NA & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual monthly max concentration of benthos & NA & NA & NA & mMN.m \({ }^{-3}\) & Insufficient data \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline suspension/deposit feeder larvae & & & & & \\
\hline Annual monthly max concentration of benthos carnivore/scavenge feeder larvae & NA & NA & NA & mMN.m \({ }^{-3}\) & Insufficient data \\
\hline Annual consumption of planktivorous fish by fish & NA & NA & NA & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual consumption of demersal fish by fish & NA & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual consumption of omnivorous zooplankton by fish and fish larvae & NA & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual consumption of omnivorous zooplankton by carnivorous zooplankton & NA & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual consumption of benthos by fish & NA & NA & NA & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Annual food consumption by birds & NA & NA & NA & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Proportion planktivorous fish in diet of birds & NA & NA & NA & dimensionless & Insufficient data \\
\hline Proportion demersal fish in diet of birds & NA & NA & NA & dimensionless & Insufficient data \\
\hline Proportion migratory fish in diet of birds & NA & NA & NA & dimensionless & Insufficient data \\
\hline Proportion discards in diet of birds & NA & NA & NA & dimensionless & Insufficient data \\
\hline Annual food consumption by pinnipeds & NA & NA & NA & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Proportion pelagic fish in diet of pinnipeds & NA & NA & NA & dimensionless & Insufficient data \\
\hline Proportion demersal fish in diet of pinnipeds & NA & NA & NA & dimensionless & Insufficient data \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Proportion migratory fish in diet of pinnipeds & NA & NA & NA & dimensionless & Insufficient data \\
\hline Annual food consumption by cetaceans & NA & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Insufficient data \\
\hline Proportion pelagic fish in diet of cetaceans & NA & NA & NA & dimensionless & Insufficient data \\
\hline Proportion demersal fish in diet of cetaceans & NA & NA & NA & dimensionless & Insufficient data \\
\hline Proportion migratory fish in diet of cetaceans & NA & NA & NA & dimensionless & Insufficient data \\
\hline Annual planktivorous fish landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 2.928 & 0.6 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual demersal fish landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 0.6408 & 0.3 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual migratory fish landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 0.9925 & 0.25 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual suspension/deposit feeding benthos landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 0.07444 & 0.028 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual carnivore/scavenge feeding benthos landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 0.12801 & 0.05 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual carnivorous zooplankton landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 0.006976 & 0.004 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual kelp landings (live weight) & Analysis of EuroSTAT ICES landings data (Lassen et al., 2012) & 0 & 0 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline Annual carbon gross PB ratio of kelp & Brady-Campbell et al.
(1984) & 2 & 0.5 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio larvae of suspension/deposit feeding benthos & Mackinson \& Daskalov (2007) & 10 & 5 & \(\mathrm{y}^{-1}\) & General value \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Annual gross PB ratio larvae of carnivore/scavenge feeding benthos & Mackinson \& Daskalov (2007) & 10 & 5 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio suspension /deposit feeding benthos & Mackinson \& Daskalov (2007) & 10 & 3 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio carnivore/scavenge feeding benthos & Mackinson \& Daskalov (2007) & 1.2 & 1 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio omnivorous zooplankton & Mackinson \& Daskalov (2007) & 20 & 10 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio carnivorous zooplankton & Mackinson \& Daskalov (2007) & 5 & 1.315 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio larvae of planktivorous fish & Mackinson \& Daskalov (2007) & 4 & 2 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio larvae of demersal fish & Mackinson \& Daskalov (2007) & 4 & 2 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio planktivorous fish & Mackinson \& Daskalov (2007) & 1.72 & 0.86 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio demersal fish & Mackinson \& Daskalov (2007) & 0.88 & 0.44 & \(y^{-1}\) & General value \\
\hline Annual gross PB ratio migratory fish & Mackinson \& Daskalov (2007) & 1.3 & 0.6 & \(y^{-1}\) & General value \\
\hline Annual net PB ratio birds & Mackinson \& Daskalov (2007) & 0.28 & 0.14 & \(y^{-1}\) & General value \\
\hline Annual net PB ratio pinnipeds & Mackinson \& Daskalov (2007) & 0.09 & 0.045 & \(y^{-1}\) & General value \\
\hline Annual net PB ratio cetaceans & Mackinson \& Daskalov (2007) & 0.02 & 0.01 & \(y^{-1}\) & General value \\
\hline Annual average proportion of kelp C uptake which is exuded & Abdullah \& Fredriksen (2004) & 0.3 & 0.1 & dimensionless & General value \\
\hline Annual average molar NC ratio of kelp & Broch \& Slagstad (2012); Sjotun et al.
(1996) & 0.12 & 0.2 & dimensionless & General value \\
\hline Annual denitrification & Brion et al. (2004) & 129 & 42 & mMN.m \({ }^{-2} \cdot y^{-1}\) & Period-specific \\
\hline Proportion of demersal fish catch discarded & Heath \& Cook (2015) & 0.51 & 0.1 & dimensionless & Period-specific \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Annual average ammonia concentration in porewater of sand grain size 0.25 mm & Serpetti (2012); Serpetti et al. (2016) & 19.24 & 9 & mMN. \(\mathrm{m}^{-3}\) & General value \\
\hline Annual average ammonia concentration in porewater of mud grain size 0.12 mm & Serpetti (2012); Serpetti et al. (2016) & 63.45 & 22 & mMN. \(\mathrm{m}^{-3}\) & General value \\
\hline Annual average nitrate concentration in porewater of sand grain size 0.25 mm & Serpetti (2012); Serpetti et al. (2016) & 4.15 & 2 & mMN.m \({ }^{-3}\) & General value \\
\hline Annual average nitrate concentration in porewater of mud grain size 0.12 mm & Serpetti (2012); Serpetti et al. (2016) & 2.34 & 1 & mMN.m \({ }^{-3}\) & General value \\
\hline Annual average organic N content of sand grain size 0.25 mm ( \(0.19-0.43 \mathrm{~mm}\) ) & Serpetti (2012); Serpetti et al. (2016) & 0.051515 & 0.02441 & \%N (gN.(g dry sed) \({ }^{-1}\) ) & General value \\
\hline Annual average organic N content of mud grain size 0.12 mm ( \(0.03-0.07 \mathrm{~mm}\) ) & Serpetti (2012); Serpetti et al. (2016) & 0.07357 & 0.0343 & \%N (gN.(g dry sed) \({ }^{-1}\) ) & General value \\
\hline Average winter (Nov-Feb) nitrate concentration shallow layer & NA & NA & NA & mMN. \(\mathrm{m}^{-3}\) & Insufficient data \\
\hline Average summer (May-Aug) nitrate concentration shallow layer & NA & NA & NA & mMN.m \({ }^{-3}\) & Insufficient data \\
\hline Average winter (Nov-Feb) nitrate concentration deep layer & NA & NA & NA & mMN. \(\mathrm{m}^{-3}\) & Insufficient data \\
\hline Average summer (May-Aug) nitrate concentration deep layer & NA & NA & NA & mMN.m \({ }^{-3}\) & Insufficient data \\
\hline Average winter (Nov-Feb) ammonia concentration shallow layer & NA & NA & NA & mMN. \(\mathrm{m}^{-3}\) & Insufficient data \\
\hline Average summer (May-Aug) ammonia concentration shallow layer & NA & NA & NA & mMN.m \({ }^{-3}\) & Insufficient data \\
\hline Average winter (Nov-Feb) ammonia concentration deep & NA & NA & NA & mMN. \(\mathrm{m}^{-3}\) & Insufficient data \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline layer & & & & & \\
\hline Average summer (May-Aug) ammonia concentration deep layer & NA & NA & NA & mMN.m \({ }^{-3}\) & Insufficient data \\
\hline Inshore offshore ratio of annual mean carnivorous zooplankton depth averaged concentration & Analysis of Continuous Plankton Recorder data & 0.904055 & 0.2 & dimensionless & Period-specific \\
\hline Inshore offshore ratio of annual mean omnivorous zooplankton depth averaged concentration & Analysis of Continuous Plankton Recorder data & 1.675727 & 0.271539 & dimensionless & Period-specific \\
\hline Inshore offshore ratio of annual mean phytoplankton surface layer concentration & Analysis of ICES hydrochemical data & 3.744403 & 1 & dimensionless & Period-specific \\
\hline Inshore offshore ratio of annual mean nitrate surface layer concentration & Analysis of ICES hydrochemical data & 3.000139 & 1 & dimensionless & Period-specific \\
\hline Inshore offshore ratio of annual mean ammonia surface layer concentration & Analysis of ICES hydrochemical data & 2.429353 & 0.9 & dimensionless & Period-specific \\
\hline Inshore offshore ratio of annual mean planktivorous fish density ( \(\mathrm{m}^{-2}\) ) & Analysis of ICES International Bottom Trawl Survey data and Stock Assessment Working Group reports & 0.67 & 0.49 & dimensionless & Period-specific \\
\hline Inshore offshore ratio of annual mean demersal fish density ( \(\mathrm{m}^{-2}\) ) & Analysis of ICES International Bottom Trawl Survey data and Stock Assessment Working Group reports & 0.39 & 0.31 & dimensionless & Period-specific \\
\hline Annual bycatch of birds & Insufficient data available & 6.25E-07 & \(3.00 \mathrm{E}-07\) & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & NA \\
\hline Annual bycatch of pinnipeds & Insufficient data available & \(2.74 \mathrm{E}-05\) & \(5.00 \mathrm{E}-05\) & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot y^{-1}\) & NA \\
\hline Annual bycatch of cetaceans & Insufficient data available & 0.000275 & \(1.00 \mathrm{E}-04\) & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & NA \\
\hline Proportion of kelp annual nitrogen uptake exported as beach-cast & Zemke-White et al. (2005) & 0.15 & 0.05 & dimensionless & General value \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Cetacean (Minke whale) catch & \begin{tabular}{l} 
Analysis of data from \\
Norwegian Directorate \\
of Fisheries and \\
International Whaling \\
Commission
\end{tabular} & \(8.38 \mathrm{E}-05\) & \(4.00 \mathrm{E}-05\) & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & Period-specific \\
\hline
\end{tabular}

\section*{Model fitting}

The major unknown parameters of the model system are within ecology model, especially those related to the temperature-dependent physiological and behavioural functioning of the guilds and geochemical cycling processes. We expect these parameters to remain constant over time unless there have been extensive changes in species composition of the guilds. Since there is no realistic prospect of independently estimating most of these parameters we require to estimate them by fitting the stationary model to target data on the observed state of the system in a given time period. Constraining the ecology model parameters is clearly dependent on the diversity and quality of the target data, but also conditional on the quality of the information on environmental drivers and fishing fleet parameters

Among the fishing fleet parameters that are required, we can assume that the power parameters and seabed impact properties of the fishing gears remain constant over time. These are defining feature of each of the gear types which determine selectivity with respect to the harvestable guilds and seabed disturbance. Of course, it is likely that in reality there have been some changes in these gear properties, but we can assume that at the coarse taxonomic resolution of the model guilds these are likely to be small. Realistic changes in selectivity and seabed impact are probably at the scale of the species within each guild and hence not resolved by this model. Changes in selectivity and seabed impact at the scale of the model guilds would more likely justify the definition of different gear types.

Similarly, the scaling parameters linking effort to harvest ratios of each guild must be assumed to remain constant over time. To assume otherwise would risk confounding the translation of changes in fishing gear activity and distribution into changes in harvest ratio.

The remaining drivers and properties of the model which define the conditions that make one time period different from another, are the environmental conditions, fishing gear activity, distribution and discard rates, and the seasonal immigration flux of migratory fish from outside the system.

Unfortunately the data required to independently determine the defining properties of the fishing fleet model are not uniformly available over time in the North Sea (Table 29). Full data requirements were not satisfied for either of the time periods 1970-1999 and 2003-2013. As a result, we had to develop an iterative process to arrive at a parameter set which provided a credible fit to the observed target data for both time periods.

TABLE 29 Quality of key datasets needed for fitting of StrathE2E2 in the North Sea.
\begin{tabular}{|l|l|l|}
\hline Data type & \(\mathbf{1 9 7 0 - 1 9 9 9}\) & \(\mathbf{2 0 0 3 - 2 0 1 3}\) \\
\hline \begin{tabular}{l} 
Target data to which the model \\
can be fitted
\end{tabular} & \begin{tabular}{l} 
Comprehensive coverage of data fields as a \\
consequence of large research programmes \\
during the period
\end{tabular} & Many missing fields in the target data \\
\hline \begin{tabular}{l} 
Gear activity rates and spatial \\
distributions
\end{tabular} & Unknown & Well known \\
\hline Discard rates for each gear & Unknown & Well known \\
\hline Power parameters for each gear & Unknown & Well known \\
\hline \begin{tabular}{l} 
Harvest ratios for ecology model \\
guilds
\end{tabular} & \begin{tabular}{l} 
Reasonably well known for fish based on long- \\
standing stock assessments (ICES 2016). \\
Less certain for invertebrates and top \\
predators.
\end{tabular} & \begin{tabular}{l} 
Reasonably well known based on long-standing stock \\
assessments (ICES 2016), by-catch and strandings \\
data.
\end{tabular} \\
\hline Environmental driving data & \begin{tabular}{l} 
Well known from NEMO-ERSEM outputs and \\
World Ocean Atlas (Butenschön et al. 2016, \\
Garcia et al. 2014)
\end{tabular} & \begin{tabular}{l} 
Well known from NEMO-ERSEM outputs and World \\
Ocean Atlas (Butenschön et al. 2016, Garcia et al. \\
2014)
\end{tabular} \\
\hline
\end{tabular}

The starting point for the iterative scheme (Figure 10) relied on four 'solid' sets of information:
1) the environmental driving data for the two periods derived from the NEMO-ERSEM model outputs,
2) the 1970-1999 and 2003-2013 guild-level harvest ratios for fish and invertebrates,
3) the 2003-2013 gear activity and discard rate data derived from the STECF database,
4) the comprehensive assemblage of 1970-1999 target data on the ecological state of the system.

Gear activity rates for 1970-1999 were not available, so we estimated approximate values by up-scaling the well-established values for 20032013. The basis for the up-scaling was the synthesis of 60 -year changes in functional guild aggregated fishing mortality rates in the North Sea compiled for the ICES Greater North Sea Eco-region review (ICES, 2016). The digitised data show that 1970-1999 averaged mortality rates for pelagic fish stocks were 1.513 -times higher than during 2003-2013, demersal fish rates 1.616 -times higher. On the other hand, mortality rates of benthic invertebrates were lower during 1970-1999 than in the more recent period, by a factor of 0.401 . We therefore scaled the 2003-2013 activity densities of the pelagic-fish-targeting gears (pelagic trawls and seine, and mackerel longlines) by a factor of 1.513 ; the demersal-fishtargeting gears (demersal beam trawl, seine, otter trawl, longlines and gillnets) by 1.616; and the benthos-targeting gears (shrimp trawl, Nephrops trawl, creels and pots, and mollusc dredges) by 0.401 . We adopted the proportional spatial distribution of activity by each gear from 2003-2013. This provided enough information to calculate initial values for the scaling parameters linking effort to harvest ratios using the function e2e_calculate_hrscale().

The patterns of inshore and offshore harvest ratios for each of the ecology model guilds, given these parameters, represents an element of known driving data for the model. Based on these data we then obtained a first set of ecology model parameters by fitting to the target data, using the function e2e_optimize_eco().

The next step was to focus on the 2003-2013 period. This time, we adopted the ecology model parameters from the previous step, the known activity, spatial distribution and discard rate data from STECF, and instead estimate the effort - harvest ratio scaling parameters required to produce the best fit to the 2003-2013 target data using the function e2e_optimize_hr().

Stage 3 returned to the 1970-1999 period. This time we adopted the newly estimated effort - harvest ratio scaling parameters from stage 2, and focussed on finding the gear activity rates required to reproduce the harvest ratios for each ecology model guild which were independently derived prior to stage 1. This is not a trivial task since the gears had overlapping selectivity patterns for the model resource guilds. The process involved using the function e2e_optimize_act() to optimize the gear activity rates (but not their spatial distributions) so as to maximise the likelihood of the expected harvest ratios given the other parameters of the fishing fleet model. Some groups of gears were constrained to vary in concert to a degree, rather than completely independently. For example the subset of gears targeting demersal fish (demersal seine, demersal otter trawl, demersal gill nets and long-lines) were linked so that changes in their activities at each iteration of the annealing process were proportional to each other plus or minus some random variation.

Stage 4 was a repeat of stage 1 but using the gear activity rates from stage 3 and the effort - harvest ratio scaling parameters from stage 2 . A further cycle through the loop of fitting stages produced minimal changes in the ecology model parameters, the effort - harvest ratio scaling parameters, or the estimates of 1970-1999 activity rates.

In the case of the whaling fleet in the North Sea, there were no data on activity rates, so a notional value was assigned for 2003-2013 when the whaling catch is known, and the effort - harvest ratio scaling parameter manually adjusted to achieve the target catch of cetaceans. This was entirely justified since the whaler catch is confined to cetaceans with no by-catch of other guilds.

For the 1970-1999 model the annealing process converged to a robust set of ecology model parameters within 11,000 iterations, with each iteration entailing a 50 year run for each proposed parameter set (stages \(1,4,7\) in the fitting scheme). Convergence was deemed to be attained when the system completed 200 iterations without finding any improvement in the likelihood. At convergence, the overall likelihood of the observed data given the parameters, driving data and the model structure was 0.421 . For the 2003-2013 period the overall likelihood with the same ecology model parameters and effort - harvest ratio scaling values was 0.496 (but note that there were fewer target data available for the 2003-2013 period). All of the observed data values, the maximum likelihood model value, and the corresponding partial likelihoods, are given in Tables 32 and 33 . Convergence of the fitting process for effort - harvest ratio scaling values (stages 2,5) and 1970-1999 gear activity rates (stages 3,6 ) was within 1000 iteration since far fewer parameters were involved in the process.


FIGURE 10 Workflow diagram for the scheme devised to fit the combined fleet and ecology model to the target data available for the two periods 1970-1999 and 2003-2013.

\section*{Results of the model fitting procedure}

TABLE 30. North Sea domain-wide activity rates (s.m \({ }^{-2} . \mathrm{d}^{-1}\) ) for each gear during 2003-2013 derived from the STECF data, and estimates for 1970-1999 derived by fitting the combined fishing fleet and ecology model to the observed ecosystem data.
\begin{tabular}{|l|r|r|}
\hline Gear category & STECF activity 2003-2013 & Estimated activity 1970-1999 \\
\hline Pelagic trawls \& seines & \(2.170 \mathrm{E}-06\) & \(6.828 \mathrm{E}-06\) \\
\hline Sandeel \& sprat trawl (Otter30-70mm+TR3) & \(4.230 \mathrm{E}-06\) & \(5.101 \mathrm{E}-06\) \\
\hline Longline mackerel & \(1.680 \mathrm{E}-06\) & \(5.965 \mathrm{E}-06\) \\
\hline Beam trawls for demersal fish (BT1+BT2) & \(1.150 \mathrm{E}-05\) & \(9.075 \mathrm{E}-05\) \\
\hline Demersal seine & \(1.720 \mathrm{E}-08\) & \(1.395 \mathrm{E}-07\) \\
\hline Demersal otter trawl (TR1) & \(2.160 \mathrm{E}-05\) & \(1.807 \mathrm{E}-04\) \\
\hline Gill nets \& longlines for demersal fish & \(7.920 \mathrm{E}-06\) & \(8.178 \mathrm{E}-05\) \\
\hline Beam trawl for shrimp & \(1.270 \mathrm{E}-05\) & \(1.447 \mathrm{E}-05\) \\
\hline Nephrops trawl (TR2) & \(1.720 \mathrm{E}-05\) & \(9.659 \mathrm{E}-06\) \\
\hline Creels & \(2.400 \mathrm{E}-05\) & \(5.415 \mathrm{E}-06\) \\
\hline Mollusc dredge & \(3.110 \mathrm{E}-06\) & \(5.822 \mathrm{E}-06\) \\
\hline Whaling vessels & \(1.980 \mathrm{E}-08\) & \(1.243 \mathrm{E}-08\) \\
\hline
\end{tabular}

TABLE 31 Harvest ratios in the two periods (1970-1999 and 2003-2013) and scaling coefficients for each ecology model resource guild on conclusion of the fitting procedure.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Ecology model \\
resource guild
\end{tabular} & \begin{tabular}{c}
\(1970-1999\) inshore \\
harvest ratio
\end{tabular} & \begin{tabular}{c} 
1970-1999 offshore \\
harvest ratio
\end{tabular} & \begin{tabular}{c} 
2003-2013 inshore \\
harvest ratio
\end{tabular} & \begin{tabular}{c} 
2003-2013 offshore \\
harvest ratio
\end{tabular} & \begin{tabular}{c} 
Effort to harvest ratio \\
scaling coefficient
\end{tabular} \\
\hline Planktivorous fish & \(9.640 \mathrm{E}-04\) & \(8.053 \mathrm{E}-04\) & \(7.116 \mathrm{E}-04\) & \(5.534 \mathrm{E}-04\) \\
\hline Demersal fish & \(1.502 \mathrm{E}-03\) & \(9.684 \mathrm{E}-04\) & \(3.075 \mathrm{E}-04\) & \(2.025 \mathrm{E}-04\) \\
\hline Migratory fish & \(2.272 \mathrm{E}-03\) & \(2.245 \mathrm{E}-03\) & \(1.063 \mathrm{E}-03\) & \(9.875 \mathrm{E}-04\) & 0.075483 \\
\hline \begin{tabular}{l} 
Suspension/deposit \\
feeding benthos
\end{tabular} & \(4.094 \mathrm{E}-04\) & \(2.411 \mathrm{E}-04\) & \(3.320 \mathrm{E}-04\) & \(1.956 \mathrm{E}-04\) & 0.369567 \\
\hline \begin{tabular}{l} 
Carnivore/scavenge \\
feeding benthos
\end{tabular} & \(7.448 \mathrm{E}-04\) & \(1.033 \mathrm{E}-04\) & \(9.568 \mathrm{E}-04\) & \(1.155 \mathrm{E}-04\) & 12.66203 \\
\hline \begin{tabular}{l} 
Carnivorous \\
zooplankton
\end{tabular} & \(1.967 \mathrm{E}-03\) & \(3.077 \mathrm{E}-03\) & \(3.756 \mathrm{E}-04\) & \(6.034 \mathrm{E}-04\) & 0.630055 \\
\hline Birds & \(7.301 \mathrm{E}-06\) & \(3.668 \mathrm{E}-06\) & \(2.013 \mathrm{E}-06\) & \(1.531 \mathrm{E}-06\) & 15.7164 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Pinnipeds & \(3.206 \mathrm{E}-04\) & \(4.195 \mathrm{E}-05\) & \(4.751 \mathrm{E}-05\) & \(6.216 \mathrm{E}-06\) & 2.781545 \\
\hline Cetaceans & \(1.672 \mathrm{E}-03\) & \(2.686 \mathrm{E}-04\) & \(7.861 \mathrm{E}-04\) & \(1.614 \mathrm{E}-04\) & 18.10814 \\
\hline Macrophytes & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

TABLE 32 Observational indices of the1970-1999 state of the North Sea ecosystem to which the model was fitted using 1970-1999 environmental drivers and fishing fleet inputs, Indices include fluxes between guilds, and annual ratios, and their standard deviations. For each index (i) the partial likelihood between observed and modelled values with parameter set \(\theta\), obtained from the simulated annealing scheme, was calculated as \(\exp \left(-X_{\theta i}^{2}\right)\), where \(X_{\theta i}^{2}=\underline{\left(\text { observed }_{i}-\operatorname{model} l_{\theta_{i}}\right)^{2}} \quad\left(\sigma_{i}\right.\) is the standard deviation of observed index \(\left.i\right)\), and the overall likelihood is given by \(\exp \left(-\left(\operatorname{mean}\left(X_{\theta}{ }^{2}\right)\right)\right.\). The results are shown graphically in Figure 11
\begin{tabular}{|c|c|c|c|c|c|}
\hline Description & Observational value & s.d. of observational value & Units & Maximum likelihood model value & Partial likelihood \\
\hline Annual total primary production & 1522 & 150.94 & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 1216.76 & 0.129411 \\
\hline Annual new production from depth integrated nitrate & 624.4 & 66.4 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 494.024 & 0.145445 \\
\hline Annual within forest net production of kelp & 600 & 100 & \(\mathrm{gC} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 597.316 & 0.99964 \\
\hline Annual omnivorous zooplankton gross production & 339.6 & 25.16 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 320.8222 & 0.756862 \\
\hline Annual carnivorous zooplankton gross production & 44.35 & 2.516 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 38.80518 & 0.088125 \\
\hline Annual planktivorous fish gross production & 29.97 & 3.509 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 23.38265 & 0.171688 \\
\hline Annual demersal fish gross production & 11.5 & 2.277 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 7.369128 & 0.192894 \\
\hline Annual suspension /deposit feeding benthos gross production & 1248 & 449 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 598.3658 & 0.351101 \\
\hline Annual carnivore/scavenge feeding benthos gross production & 21.1 & 7.6 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 20.68533 & 0.998513 \\
\hline Annual net production of birds & 8.452E-04 & \(2.00 \mathrm{E}-04\) & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.000878 & 0.986591 \\
\hline Annual net production of pinnipeds & 7.245E-04 & 3.50e-04 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.000809 & 0.971189 \\
\hline Annual net production of cetaceans & 1.691E-03 & \(8.00 \mathrm{E}-04\) & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.001162 & 0.803953 \\
\hline Annual monthly max concentration of benthos suspension /deposit feeder larvae & 1.185 & 0.4421 & \(\mathrm{mMN} . \mathrm{m}^{-3}\) & 0.636286 & 0.462905 \\
\hline Annual monthly max concentration of benthos carnivore/scavenge feeder larvae & 0.334 & 0.1013 & mMN.m \({ }^{-3}\) & 0.288244 & 0.903021 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Annual consumption of planktivorous fish by fish & 23.48 & 9.057 & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 2.879647 & 0.075266 \\
\hline Annual consumption of demersal fish by fish & 2.138 & 0.503 & mMN.m \({ }^{-2} \cdot y^{-1}\) & 1.102063 & 0.119935 \\
\hline Annual consumption of omnivorous zooplankton by fish and fish larvae & 92.28 & 13.019 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 79.08908 & 0.598522 \\
\hline Annual consumption of omnivorous zooplankton by carnivorous zooplankton & 60.38 & 25.157 & mMN.m \({ }^{-2} \cdot y^{-1}\) & 106.8211 & 0.181924 \\
\hline Annual consumption of benthos by fish & 12.58 & 6.289 & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 7.312845 & 0.704276 \\
\hline Annual food consumption by birds & 0.6538 & 0.325 & mMN.m \({ }^{-2} \cdot y^{-1}\) & 0.099423 & 0.233439 \\
\hline Proportion planktivorous fish in diet of birds & 0.6 & 0.2 & Dimensionless & 0.612792 & 0.997957 \\
\hline Proportion demersal fish in diet of birds & 0.1 & 0.05 & Dimensionless & 0.146752 & 0.645879 \\
\hline Proportion migratory fish in diet of birds & 0.05 & 0.015 & Dimensionless & 0.050157 & 0.999945 \\
\hline Proportion discards in diet of birds & 0.05 & 0.02 & Dimensionless & 0.00681 & 0.097132 \\
\hline Annual food consumption by pinnipeds & 0.2161 & 0.105 & mMN.m-2. \(\mathrm{y}^{-1}\) & 0.139659 & 0.767279 \\
\hline Proportion pelagic fish in diet of pinnipeds & 0.2910 & 0.0728 & Dimensionless & 0.320438 & 0.921604 \\
\hline Proportion demersal fish in diet of pinnipeds & 0.6969 & 0.1742 & Dimensionless & 0.633588 & 0.936145 \\
\hline Proportion migratory fish in diet of pinnipeds & 0.01208 & 0.0030 & Dimensionless & 0.010932 & 0.929773 \\
\hline Annual food consumption by cetaceans & 0.9691 & 0.48 & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.48652 & 0.603313 \\
\hline Proportion pelagic fish in diet of cetaceans & 0.6632 & 0.1658 & Dimensionless & 0.727068 & 0.92836 \\
\hline Proportion demersal fish in diet of cetaceans & 0.0995 & 0.04 & Dimensionless & 0.123305 & 0.837755 \\
\hline Proportion migratory fish in diet of cetaceans & 0.08014 & 0.035 & Dimensionless & 0.099164 & 0.862626 \\
\hline Annual planktivorous fish landings (live weight) & 5.555 & 0.2 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 5.648772 & 0.895909 \\
\hline Annual demersal fish landings (live weight) & 1.735 & 0.08 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 1.764646 & 0.933643 \\
\hline Annual migratory fish landings (live weight) & 0.775 & 0.308 & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.778053 & 0.999951 \\
\hline Annual suspension /deposit feeding benthos landings (live weight) & 0.0953 & 0.0382 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.094009 & 0.99943 \\
\hline Annual carnivore/scavenge feeding benthos landings (live weight) & 0.0829 & 0.0169 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.05639 & 0.292193 \\
\hline Annual carnivorous zooplankton landings (live weight) & 0.00147 & \(9.32 \mathrm{E}-04\) & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.002913 & 0.301576 \\
\hline Annual kelp landings (live weight) & 0 & 0 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0 & NA \\
\hline Annual carbon gross PB ratio of kelp & 2 & 0.5 & \(\mathrm{y}^{-1}\) & 1.318367 & 0.394851 \\
\hline Annual gross PB ratio larvae of suspension/deposit feeding benthos & 10 & 5 & \(y^{-1}\) & 15.49276 & 0.546944 \\
\hline Annual gross PB ratio larvae of & 10 & 5 & \(y^{-1}\) & 15.86236 & 0.502909 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline carnivore/scavenge feeding benthos & & & & & \\
\hline Annual gross PB ratio suspension/deposit feeding benthos & 10 & 3 & \(y^{-1}\) & 11.94798 & 0.809925 \\
\hline Annual gross PB ratio carnivore/scavenge feeding benthos & 1.2 & 1 & \(y^{-1}\) & 1.939656 & 0.760678 \\
\hline Annual gross PB ratio omnivorous zooplankton & 20 & 10 & \(y^{-1}\) & 10.49988 & 0.636824 \\
\hline Annual gross PB ratio carnivorous zooplankton & 5 & 1.315 & \(\mathrm{y}^{-1}\) & 3.732141 & 0.628264 \\
\hline Annual gross PB ratio larvae of planktivorous fish & 4 & 2 & \(y^{-1}\) & 0.651836 & 0.246283 \\
\hline Annual gross PB ratio larvae of demersal fish & 4 & 2 & \(y^{-1}\) & 6.365609 & 0.496827 \\
\hline Annual gross PB ratio planktivorous fish & 1.72 & 0.86 & \(y^{-1}\) & 1.022148 & 0.719477 \\
\hline Annual gross PB ratio demersal fish & 0.88 & 0.44 & \(y^{-1}\) & 0.299076 & 0.418294 \\
\hline Annual gross PB ratio migratory fish & 1.3 & 0.6 & \(y^{-1}\) & 0.185255 & 0.178011 \\
\hline Annual net PB ratio birds & 0.28 & 0.14 & \(y^{-1}\) & 0.126261 & 0.547194 \\
\hline Annual net PB ratio pinnipeds & 0.09 & 0.045 & \(y^{-1}\) & 0.041177 & 0.555126 \\
\hline Annual net PB ratio cetaceans & 0.02 & 0.01 & \(\mathrm{y}^{-1}\) & 0.029723 & 0.623302 \\
\hline Annual average proportion of kelp C uptake which is exuded & 0.3 & 0.1 & Dimensionless & 0.296805 & 0.99949 \\
\hline Annual average molar NC ratio of kelp & 0.12 & 0.2 & Dimensionless & 0.123307 & 0.999863 \\
\hline Annual denitrification & 129 & 42 & mMN.m \({ }^{-2} \cdot y^{-1}\) & 208.0052 & 0.170465 \\
\hline Proportion of demersal fish catch discarded & 0.37 & 0.075 & Dimensionless & 0.360811 & 0.992522 \\
\hline Annual average ammonia concentration in porewater of sand grain size 0.25 mm & 19.24 & 9 & mMN.m \({ }^{-3}\) & 4.715929 & 0.271946 \\
\hline Annual average ammonia concentration in porewater of mud grain size 0.12 mm & 63.45 & 22 & mMN.m \({ }^{-3}\) & 51.95817 & 0.872469 \\
\hline Annual average nitrate concentration in porewater of sand grain size 0.25 mm & 4.15 & 2 & mMN.m \({ }^{-3}\) & 5.160632 & 0.880142 \\
\hline Annual average nitrate concentration in porewater of mud grain size 0.12 mm & 2.34 & 1 & mMN. \(\mathrm{m}^{-3}\) & 3.121486 & 0.736858 \\
\hline Annual average organic N content of sand grain size 0.25 mm ( \(0.19-0.43 \mathrm{~mm}\) ) & 0.05152 & 0.02441 & \[
\begin{aligned}
& \text { \%N (gN.(g dry } \\
& \text { sed) })^{-1} \text { ) }
\end{aligned}
\] & 0.049978 & 0.998019 \\
\hline Annual average organic N content of mud grain size 0.12 mm ( \(0.03-0.07 \mathrm{~mm}\) ) & 0.07357 & 0.0343 & \[
\begin{aligned}
& \text { \%N (gN.(g dry } \\
& \text { sed) }{ }^{-1} \text { ) }
\end{aligned}
\] & 0.066265 & 0.977575 \\
\hline Average winter (Nov-Feb) nitrate concentration shallow layer & 9.998 & 2.135 & mMN.m \({ }^{-3}\) & 9.420257 & 0.964048 \\
\hline Average summer (May-Aug) nitrate concentration & 2.161 & 1.089 & mMN. \(\mathrm{m}^{-3}\) & 3.215862 & 0.625538 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline shallow layer & & & & & \\
\hline Average winter (Nov-Feb) nitrate concentration deep layer & 6.995 & 0.836 & \(\mathrm{mMN} . \mathrm{m}^{-3}\) & 9.516758 & 0.010572 \\
\hline Average summer (May-Aug) nitrate concentration deep layer & 2.837 & 0.917 & mMN.m \({ }^{-3}\) & 5.697196 & 0.007717 \\
\hline Average winter (Nov-Feb) ammonia concentration shallow layer & 2.367 & 0.774 & \(\mathrm{mMN} . \mathrm{m}^{-3}\) & 1.781435 & 0.751128 \\
\hline Average summer (May-Aug) ammonia concentration shallow layer & 1.737 & 0.669 & \(\mathrm{mMN} . \mathrm{m}^{-3}\) & 3.181125 & 0.097311 \\
\hline Average winter (Nov-Feb) ammonia concentration deep layer & 0.853 & 0.32 & \(\mathrm{mMN} . \mathrm{m}^{-3}\) & 1.571777 & 0.080246 \\
\hline Average summer (May-Aug) ammonia concentration deep layer & 1.338 & 0.708 & mMN.m \({ }^{-3}\) & 2.84671 & 0.103264 \\
\hline Inshore:offshore ratio of annual mean carnivorous zooplankton depth averaged concentration & 0.904055 & 0.385 & Dimensionless & 1.434845 & 0.386596 \\
\hline Inshore:offshore ratio of annual mean omnivorous zooplankton depth averaged concentration & 1.676 & 0.2715 & Dimensionless & 1.404356 & 0.606908 \\
\hline Inshore:offshore ratio of annual mean phytoplankton surface layer concentration & 3.744 & 1 & Dimensionless & 0.992409 & 0.022669 \\
\hline Inshore:offshore ratio of annual mean nitrate surface layer concentration & 3.000 & 1 & Dimensionless & 0.876221 & 0.10482 \\
\hline Inshore:offshore ratio of annual mean ammonia surface layer concentration & 2.4294 & 0.9 & Dimensionless & 1.589962 & 0.647314 \\
\hline Inshore:offshore ratio of annual mean planktivorous fish density \(\left(\mathrm{m}^{-2}\right)\) & 0.67 & 0.49 & Dimensionless & 0.419324 & 0.877341 \\
\hline Inshore:offshore ratio of annual mean demersal fish density ( \(\mathrm{m}^{-2}\) ) & 0.39 & 0.31 & Dimensionless & 0.875153 & 0.293866 \\
\hline Annual bycatch of birds & NA & NA & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 8.99E-07 & NA \\
\hline Annual bycatch of pinnipeds & NA & NA & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & \(5.19 \mathrm{E}-05\) & NA \\
\hline Annual bycatch of cetaceans & NA & NA & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.000394 & NA \\
\hline Proportion of kelp annual nitrogen uptake exported as beach-cast & 0.15 & 0.05 & Dimensionless & 0.085593 & 0.436199 \\
\hline Annual cetacean catch & 4.05E-05 & \(2.00 \mathrm{E}-05\) & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & \(4.04 \mathrm{E}-05\) & 0.999992 \\
\hline Overall model & & & & & 0.421073 \\
\hline
\end{tabular}


FIGURE 11 Annual integrated or averaged results from the best-fit 1970-1999 stationary model and the corresponding observed data from the North Sea. Red boxes and whiskers show the \(0.5,25,50,75\) and 99.5 centiles of the likelihood distribution of model results given the uncertainty in fitted parameter values. Black boxes and whiskers show the equivalent variability in measurements from the North Sea aggregated over the period 1970-1999. Drawn with the function e2e_compare_obs(,,selection="ANNUAL").

TABLE 33 Observational indices of the 2003-2013 state of the North Sea ecosystem to which the model was fitted using 2003-2013 environmental drivers and fishing fleet inputs, Indices include fluxes between guilds, and annual ratios, and their standard deviations. For each index ( \(I\) ) the partial likelihood between observed and modelled values with parameter set \(\theta\), obtained from the simulated annealing scheme, was calculated as \(\exp \left(-X_{\theta i}{ }^{2}\right)\), where \(X_{\theta i}{ }^{2}=\frac{\left(\text { observed }_{i}-\bmod e e_{\theta i}\right)^{2}}{2 \sigma_{i}^{2}} \quad\left(\sigma_{i}\right.\) is the standard deviation of observed index \(\left.I\right)\), and the overall likelihood is given by \(\exp \left(-\left(\operatorname{mean}\left(X_{\theta}{ }^{2}\right)\right)\right.\). The results are shown graphically in Figure 12.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Description & Observational value & s.d. of observational value & Units & Maximum likelihood model value & Partial likelihood \\
\hline Annual total primary production & 1522 & 150.94 & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 1234.26 & 0.162507 \\
\hline Annual new production from depth integrated nitrate & 672.8 & 73.00 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 482.3586 & 0.033325 \\
\hline Annual within forest net production of kelp & 600 & 100 & gC. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 600.0001 & 1 \\
\hline Annual omnivorous zooplankton gross production & 339.6 & 25.157 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 319.3574 & 0.723445 \\
\hline Annual carnivorous zooplankton gross production & NA & NA & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 45.57989 & NA \\
\hline Annual planktivorous fish gross production & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 13.67917 & NA \\
\hline Annual demersal fish gross production & NA & NA & mMN.m \({ }^{-2} \cdot y^{-1}\) & 19.80397 & NA \\
\hline Annual suspension /deposit feeding benthos gross production & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 603.6545 & NA \\
\hline Annual carnivore/scavenge feeding benthos gross production & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 29.87239 & NA \\
\hline Annual net production of birds & NA & NA & mMN.m \({ }^{-2} \cdot y^{-1}\) & 0.00137 & NA \\
\hline Annual net production of pinnipeds & NA & NA & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.009809 & NA \\
\hline Annual net production of cetaceans & NA & NA & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.00133 & NA \\
\hline Annual monthly max concentration of benthos suspension /deposit feeder larvae & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-3}\) & 0.608316 & NA \\
\hline Annual monthly max concentration of benthos carnivore/scavenge feeder larvae & NA & NA & mMN. \(\mathrm{m}^{-3}\) & 0.443911 & NA \\
\hline Annual consumption of planktivorous fish by fish & NA & NA & mMN.m \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 3.428481 & NA \\
\hline Annual consumption of demersal fish by fish & NA & NA & mMN. \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 2.384715 & NA \\
\hline Annual consumption of omnivorous zooplankton by fish and fish larvae & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 71.53949 & NA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Annual consumption of omnivorous zooplankton by carnivorous zooplankton & NA & NA & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 123.7521 & NA \\
\hline Annual consumption of benthos by fish & NA & NA & mMN.m \({ }^{-2} \cdot y^{-1}\) & 22.24755 & NA \\
\hline Annual food consumption by birds & NA & NA & mMN.m \({ }^{-2} \cdot \mathrm{y}^{-1}\) & 0.125026 & NA \\
\hline Proportion planktivorous fish in diet of birds & NA & NA & Dimensionless & 0.349124 & NA \\
\hline Proportion demersal fish in diet of birds & NA & NA & Dimensionless & 0.347781 & NA \\
\hline Proportion migratory fish in diet of birds & NA & NA & Dimensionless & 0.112013 & NA \\
\hline Proportion discards in diet of birds & NA & NA & Dimensionless & 0.004897 & NA \\
\hline Annual food consumption by pinnipeds & NA & NA & mMN.m \({ }^{-2} \cdot y^{-1}\) & 0.537479 & NA \\
\hline Proportion pelagic fish in diet of pinnipeds & NA & NA & Dimensionless & 0.101002 & NA \\
\hline Proportion demersal fish in diet of pinnipeds & NA & NA & Dimensionless & 0.86852 & NA \\
\hline Proportion migratory fish in diet of pinnipeds & NA & NA & Dimensionless & 0.014271 & NA \\
\hline Annual food consumption by cetaceans & NA & NA & mMN.m \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.555505 & NA \\
\hline Proportion pelagic fish in diet of cetaceans & NA & NA & Dimensionless & 0.435075 & NA \\
\hline Proportion demersal fish in diet of cetaceans & NA & NA & Dimensionless & 0.29101 & NA \\
\hline Proportion migratory fish in diet of cetaceans & NA & NA & Dimensionless & 0.224505 & NA \\
\hline Annual planktivorous fish landings (live weight) & 2.928 & 0.6 & mMN.m \({ }^{-2} \cdot y^{-1}\) & 2.266516 & 0.544589 \\
\hline Annual demersal fish landings (live weight) & 0.6408 & 0.3 & mMN.m \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.829583 & 0.820374 \\
\hline Annual migratory fish landings (live weight) & 0.9925 & 0.25 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 1.00489 & 0.998773 \\
\hline Annual suspension/deposit feeding benthos landings (live weight) & 0.07444 & 0.028 & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.075691 & 0.999003 \\
\hline Annual carnivore/scavenge feeding benthos landings (live weight) & 0.12801 & 0.05 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.129282 & 0.999677 \\
\hline Annual carnivorous zooplankton landings (live weight) & 0.006976 & 0.004 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.00657 & 0.994866 \\
\hline Annual kelp landings (live weight) & 0 & 0 & mMN.m \(\mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0 & NA \\
\hline Annual carbon gross PB ratio of kelp & 2 & 0.5 & \(y^{-1}\) & 1.332273 & 0.40995 \\
\hline Annual gross PB ratio larvae of suspension /deposit feeding benthos & 10 & 5 & \(y^{-1}\) & 15.56301 & 0.538515 \\
\hline Annual gross PB ratio larvae of carnivore/scavenge feeding benthos & 10 & 5 & \(y^{-1}\) & 15.70319 & 0.52177 \\
\hline Annual gross PB ratio suspension /deposit feeding benthos & 10 & 3 & \(y^{-1}\) & 12.20704 & 0.762913 \\
\hline Annual gross PB ratio carnivore/scavenge feeding & 1.2 & 1 & \(y^{-1}\) & 1.971445 & 0.742625 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline benthos & & & & & \\
\hline Annual gross PB ratio omnivorous zooplankton & 20 & 10 & \(y^{-1}\) & 11.53846 & 0.699081 \\
\hline Annual gross PB ratio carnivorous zooplankton & 5 & 1.315 & \(y^{-1}\) & 3.597897 & 0.566413 \\
\hline Annual gross PB ratio larvae of planktivorous fish & 4 & 2 & \(y^{-1}\) & 0.633989 & 0.242621 \\
\hline Annual gross PB ratio larvae of demersal fish & 4 & 2 & \(y^{-1}\) & 5.564162 & 0.736515 \\
\hline Annual gross PB ratio planktivorous fish & 1.72 & 0.86 & \(y^{-1}\) & 1.029416 & 0.724402 \\
\hline Annual gross PB ratio demersal fish & 0.88 & 0.44 & \(y^{-1}\) & 0.301554 & 0.421408 \\
\hline Annual gross PB ratio migratory fish & 1.3 & 0.6 & \(\mathrm{y}^{-1}\) & 0.179503 & 0.17486 \\
\hline Annual net PB ratio birds & 0.28 & 0.14 & \(y^{-1}\) & 0.157159 & 0.680486 \\
\hline Annual net PB ratio pinnipeds & 0.09 & 0.045 & \(\mathrm{y}^{-1}\) & 0.140334 & 0.534959 \\
\hline Annual net PB ratio cetaceans & 0.02 & 0.01 & \(y^{-1}\) & 0.029476 & 0.638279 \\
\hline Annual average proportion of kelp C uptake which is exuded & 0.3 & 0.1 & Dimensionless & 0.297185 & 0.999604 \\
\hline Annual average molar NC ratio of kelp & 0.12 & 0.2 & Dimensionless & 0.12224 & 0.999937 \\
\hline Annual denitrification & 129 & 42 & mMN.m \({ }^{-2} \cdot y^{-1}\) & 205.4724 & 0.190595 \\
\hline Proportion of demersal fish catch discarded & 0.51 & 0.1 & Dimensionless & 0.514979 & 0.998761 \\
\hline Annual average ammonia concentration in porewater of sand grain size 0.25 mm & 19.24 & 9 & \(\mathrm{mMN} . \mathrm{m}^{-3}\) & 4.794285 & 0.275783 \\
\hline Annual average ammonia concentration in porewater of mud grain size 0.12 mm & 63.45 & 22 & mMN.m \({ }^{-3}\) & 53.57287 & 0.904129 \\
\hline Annual average nitrate concentration in porewater of sand grain size 0.25 mm & 4.15 & 2 & mMN.m \({ }^{-3}\) & 5.054439 & 0.902803 \\
\hline Annual average nitrate concentration in porewater of mud grain size 0.12 mm & 2.34 & 1 & mMN.m \({ }^{-3}\) & 3.045961 & 0.779431 \\
\hline Annual average organic N content of sand grain size 0.25 mm ( \(0.19-0.43 \mathrm{~mm}\) ) & 0.051515 & 0.02441 & \[
\begin{aligned}
& \text { \%N (gN.(g dry } \\
& \text { sed) }{ }^{-1} \text { ) } \\
& \hline
\end{aligned}
\] & 0.049978 & 0.99802 \\
\hline Annual average organic N content of mud grain size 0.12 mm ( \(0.03-0.07 \mathrm{~mm}\) ) & 0.07357 & 0.0343 & \[
\begin{aligned}
& \text { \%N ( } \mathrm{gN} \mathrm{~N} .(\mathrm{g} \mathrm{dry} \\
& \text { sed) })^{-1} \text { ) }
\end{aligned}
\] & 0.066284 & 0.977694 \\
\hline Average winter (Nov-Feb) nitrate concentration shallow layer & NA & NA & mMN.m \({ }^{-3}\) & 9.339934 & NA \\
\hline Average summer (May-Aug) nitrate concentration shallow layer & NA & NA & mMN.m \({ }^{-3}\) & 2.930569 & NA \\
\hline Average winter (Nov-Feb) nitrate concentration deep layer & NA & NA & mMN.m \({ }^{-3}\) & 9.431013 & NA \\
\hline Average summer (May-Aug) nitrate concentration & NA & NA & mMN.m \({ }^{-3}\) & 5.615285 & NA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline deep layer & & & & & \\
\hline Average winter (Nov-Feb) ammonia concentration shallow layer & NA & NA & mMN. \(\mathrm{m}^{-3}\) & 1.813984 & NA \\
\hline Average summer (May-Aug) ammonia concentration shallow layer & NA & NA & mMN.m \({ }^{-3}\) & 3.234808 & NA \\
\hline Average winter (Nov-Feb) ammonia concentration deep layer & NA & NA & mMN.m \({ }^{-3}\) & 1.596596 & NA \\
\hline Average summer (May-Aug) ammonia concentration deep layer & NA & NA & mMN.m \({ }^{-3}\) & 2.904538 & NA \\
\hline Inshore:offshore ratio of annual mean carnivorous zooplankton depth averaged concentration & 0.904055 & 0.2 & Dimensionless & 1.397925 & 0.047413 \\
\hline Inshore:offshore ratio of annual mean omnivorous zooplankton depth averaged concentration & 1.675727 & 0.271539 & Dimensionless & 1.278671 & 0.343326 \\
\hline Inshore:offshore ratio of annual mean phytoplankton surface layer concentration & 3.744403 & 1 & Dimensionless & 1.002478 & 0.023305 \\
\hline Inshore:offshore ratio of annual mean nitrate surface layer concentration & 3.000139 & 1 & Dimensionless & 0.879365 & 0.105521 \\
\hline Inshore:offshore ratio of annual mean ammonia surface layer concentration & 2.429353 & 0.9 & Dimensionless & 1.606846 & 0.658623 \\
\hline Inshore:offshore ratio of annual mean planktivorous fish density \(\left(\mathrm{m}^{-2}\right)\) & 0.67 & 0.49 & dimensionless & 0.368966 & 0.828022 \\
\hline Inshore:offshore ratio of annual mean demersal fish density ( \(\mathrm{m}^{-2}\) ) & 0.39 & 0.31 & Dimensionless & 0.944781 & 0.201622 \\
\hline Annual bycatch of birds & \(6.25 \mathrm{E}-07\) & \(3.00 \mathrm{E}-07\) & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 4.59E-07 & 0.857692 \\
\hline Annual bycatch of pinnipeds & \(2.74 \mathrm{E}-05\) & \(5.00 \mathrm{E}-05\) & \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & \(2.71 \mathrm{E}-05\) & 0.99998 \\
\hline Annual bycatch of cetaceans & 0.000275 & \(1.00 \mathrm{E}-04\) & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 0.000276 & 0.999996 \\
\hline Proportion of kelp annual nitrogen uptake exported as beach-cast & 0.15 & 0.05 & Dimensionless & 0.083798 & 0.41622 \\
\hline Cetacean catch & \(8.38 \mathrm{E}-05\) & 4.00E-05 & \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) & 8.84E-05 & 0.993414 \\
\hline Overall model & & & & & 0.496398 \\
\hline
\end{tabular}


FIGURE 12 Annual integrated or averaged results from the best-fit 2003-2013 stationary model and the corresponding observed data from the North Sea. Red boxes and whiskers show the \(0.5,25,50,75\) and 99.5 centiles of the likelihood distribution of model results given the uncertainty in fitted parameter values. Black boxes and whiskers show the equivalent variability in measurements from the North Sea aggregated over the period 2003-2013. Drawn with the function e2e_compare_obs(,,selection="ANNUAL").

TABLE 34 Maximum likelihood preference parameters prefresource-consumer for all resource-consumer links in the model, estimated using the simulated annealing scheme to fit the 1970-1999 model to the observed data on ecosystem state. Preferences for each consumer guild (columns) sum to 1.0 . Values shown are constrained to 3 decimal places Note that the preference parameters are inputs to the model, and do not represent proportions in the diet, Diet composition is an emergent output of the model.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{18}{|c|}{Consumers} \\
\hline Resources & ID & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
\hline Water column ammonia & 1 & 0.271 & 0.271 & & & & & & & & & & & & & & \\
\hline Water column nitrate & 2 & 0.729 & 0.729 & & & & & & & & & & & & & & \\
\hline Suspended detritus & 3 & & & 0.001 & & & & & & & 0.976 & 0.312 & 0.295 & & & & \\
\hline Sediment detritus & 4 & & & & & & & & & & & & 0.478 & & & & \\
\hline Macrophyte debris & 5 & & & & & & & & & & & & & 0.007 & & & \\
\hline Corpses & 6 & & & & & & & & & 0.010 & & & & 0.420 & 0.088 & 0.053 & \\
\hline Fishery discards & 7 & & & & & & & & & 0.097 & & & & & 0.259 & 0.059 & 0.132 \\
\hline Macrophytes & 8 & & & & & & & & & & & & & 0.013 & & & \\
\hline Phytoplankton & 9 & & & 0.906 & & & & & & & 0.024 & 0.688 & 0.227 & & & & \\
\hline Omnivorous zooplankton & 10 & & & & 0.653 & 0.147 & 0.947 & 0.361 & 0.366 & & & & & & & & 0.010 \\
\hline Carnivorous zooplankton & 11 & & & & & & & 0.152 & 0.014 & 0.075 & & & & & 0.091 & 0.000 & 0.018 \\
\hline Larvae of planktivorous fish & 12 & & & & 0.017 & & & 0.128 & 0.050 & 0.116 & & & & & & & \\
\hline Larvae of demersal fish & 13 & & & & 0.041 & & & 0.179 & 0.058 & 0.111 & & & & & & & \\
\hline Planktivorous fish & 14 & & & & & & & & & 0.106 & & & & & 0.233 & 0.135 & 0.310 \\
\hline Migratory fish & 15 & & & & & & & & & 0.018 & & & & & 0.184 & 0.048 & 0.390 \\
\hline Demersal fish & 16 & & & & & & & & & 0.006 & & & & & 0.145 & 0.705 & 0.136 \\
\hline Larvae of suspension/deposit feeding benthos & 17 & & & 0.002 & 0.192 & 0.588 & 0.043 & 0.088 & 0.285 & & & & & & & & \\
\hline Larvae of carnivorous/scavenge feeding benthos & 18 & & & 0.092 & 0.096 & 0.265 & 0.010 & 0.092 & 0.227 & & & & & & & & \\
\hline Suspension/deposit feeding benthos & 19 & & & & & & & & & 0.390 & & & & 0.561 & 0.000 & 0.000 & 0.000 \\
\hline Carnivorous/scavenge feeding benthos & 20 & & & & & & & & & 0.072 & & & & & 0.000 & 0.000 & 0.000 \\
\hline Birds & 21 & & & & & & & & & & & & & & & 0.000 & 0.000 \\
\hline Pinnipeds & 22 & & & & & & & & & & & & & & & & 0.005 \\
\hline Cetaceans & 23 & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABLE 35 Fitted uptake, mortality, migration and exploitable fraction parameters for the maximum likelihood model, estimated using the simulated annealing scheme. Maximum uptake rates are given at the \(Q_{10}\) reference temperature.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Consumer guild & Maximum carbon uptake rate & Carbon exudation rate & Maximum nitrogen uptake rate & Nitrogen uptake halfsaturation coefficient & BeddingtonDeAngelis parameter & Density dependent mortality coefficient & Active migration coefficient & Maximum exploitable fraction of the stock \\
\hline Macrophytes & 0.026 & \(1.811 \mathrm{E}-08\) & 0.009 & 18.272 & & 3.099E-08 & & 0.041 \\
\hline Phytoplankton - shallow & & & 2.876 & 4.302 & & \(5.142 \mathrm{E}-02\) & & \\
\hline Phytoplankton - deep & & & & & & \(6.328 \mathrm{E}-02\) & & \\
\hline Omnivorous zooplankton & & & 2.156 & 3.390 & & \(3.346 \mathrm{E}-05\) & & \\
\hline Carnivorous zooplankton & & & 0.154 & 1.086 & & \(2.090 \mathrm{E}-04\) & & 0.004 \\
\hline Larvae of planktivorous fish & & & 0.315 & 6.408 & & \(4.101 \mathrm{E}-06\) & & \\
\hline Larvae of demersal fish & & & 0.233 & 2.036 & & \(5.787 \mathrm{E}-07\) & & \\
\hline Planktivorous fish & & & 0.134 & 2.127 & & \(1.906 \mathrm{E}-05\) & \(1.579 \mathrm{E}-03\) & 0.874 \\
\hline Migratory fish & & & 0.033 & 2.264 & & \(1.691 \mathrm{E}-06\) & 3.545E-05 & 0.684 \\
\hline Demersal fish & & & 0.011 & 0.526 & & \(3.760 \mathrm{E}-05\) & \(2.205 \mathrm{E}-03\) & 0.900 \\
\hline Larvae of suspension/deposit feeding benthos & & & 0.334 & 1.033 & & \(9.633 \mathrm{E}-06\) & & \\
\hline Larvae of carnivorous/scavenge feeding benthos & & & 0.993 & 2.371 & & \(2.540 \mathrm{E}-07\) & & \\
\hline Suspension/deposit feeding benthos & & & 0.910 & 1.722 & & \(3.674 \mathrm{E}-04\) & & 0.030 \\
\hline Carnivorous/scavenge feeding benthos & & & 0.027 & 9.016 & & 3.979E-04 & & 0.155 \\
\hline Birds & & & 0.648 & 0.995 & 4553.179 & 4.367E-02 & \(9.759 \mathrm{E}-03\) & 0.100 \\
\hline Pinnipeds & & & 0.430 & 1.669 & 2113.567 & \(5.091 \mathrm{E}-03\) & \(9.837 \mathrm{E}-03\) & 0.099 \\
\hline Cetaceans & & & 0.398 & 0.519 & 895.342 & \(1.050 \mathrm{E}-03\) & \(9.985 \mathrm{E}-03\) & 0.313 \\
\hline
\end{tabular}

TABLE 36 Fitted values for parameters of microbiological rates at the \(Q_{10}\) reference temperature, and other related parameters, for the maximum likelihood model, estimated using the simulated annealing scheme.
\begin{tabular}{|l|r|}
\hline Description & \multicolumn{1}{l|}{ Value } \\
\hline Water column detritus mineralisation rate & \(1.676 \mathrm{E}-05\) \\
\hline Upper layer water column nitrification rate & \(1.187 \mathrm{E}-07\) \\
\hline Upper layer water column denitrification rate & \(2.380 \mathrm{E}-09\) \\
\hline Lower layer water column nitrification rate & \(4.052 \mathrm{E}-02\) \\
\hline Lower layer water column denitrification rate & \(4.962 \mathrm{E}-07\) \\
\hline Formation rate parameter for refractory detritus & \(1.627 \mathrm{E}-04\) \\
\hline Mineralisation rate scaling parameter for refractory detritus & \(2.614 \mathrm{E}-02\) \\
\hline Proportion of refractory detritus digestible by benthos & \(1.485 \mathrm{E}-02\) \\
\hline Sediment detritus mineralisation rate & \(-1.598 \mathrm{E}-08\) \\
\hline Grain size sensitivity for sediment detritus mineralisation rate & \(6.276 \mathrm{E}-05\) \\
\hline Sediment nitrification rate & \(-2.645 \mathrm{E}-06\) \\
\hline Grain size sensitivity for sediment nitrification rate & \(5.281 \mathrm{E}-01\) \\
\hline Sediment denitrification rate & \(1.537 \mathrm{E}-07\) \\
\hline Grain size sensitivity for sediment denitrification rate & \(1.837 \mathrm{E}-02\) \\
\hline Conversion rate of discards to corpses & \(2.233 \mathrm{E}-01\) \\
\hline Conversion rate of corpses to sediment detritus & \(2.669 \mathrm{E}-02\) \\
\hline Detritus sinking rate in the upper layers & \(9.813 \mathrm{E}-02\) \\
\hline Detritus sinking rate in the lower layer & \(3.580 \mathrm{E}-06\) \\
\hline Density dependent self-shading parameter for macrophytes & \(4.422 \mathrm{E}-05\) \\
\hline Wave-dependent beach-cast rate for macrophyte debris & \(1.481 \mathrm{E}-03\) \\
\hline Fitting parameter for undersize demersal fish function & \\
\hline
\end{tabular}

TABLE 37 Fixed assimilation, metabolism, fecundity, and exploitation threshold parameters which were not subject to fitting. The only parameter which differed between the 1970-1999 and 2003-2013 simulation periods was the threshold for zero remaining exploitable biomass of carnivorous zooplankton. The value was set to \(14 \mathrm{mMN} . \mathrm{m}^{-2}\) as shown here for 1970-1999, and \(4 \mathrm{mMN} . \mathrm{m}^{-2}\) for 2003-2013 to reflect an observed trend in squid abundance and landings in the North Sea (Pierce et al., 1998; van der Kooij et al., 2016)
\(\left.\begin{array}{|l|r|r|l|l|l|}\hline \text { Consumer guild } & \begin{array}{l}\text { Assimilation } \\ \text { efficiency }\end{array} & \begin{array}{l}\text { Background } \\ \text { metabolic rate at } \\ \mathbf{Q}_{10} \text { reference } \\ \text { temperature (d }{ }^{-1} \text { ) }\end{array} & \begin{array}{l}\text { Annual weight- } \\ \text { specific } \\ \text { fecundity }\end{array} & \begin{array}{l}\text { Threshold for zero } \\ \text { exploitable biomass } \\ \text { remaining (mMN.m }\end{array} \\ \text { biomass (mMN.m }\end{array}\right)\)

TABLE 38. Other fixed parameters which were not subject to fitting.
\begin{tabular}{|l|c|}
\hline Description & Value \\
\hline Irradiance at maximum carbon uptake by macrophytes (E.m-2.d \({ }^{-1}\) ) & 3 \\
\hline Minimum nitrogen:carbon molar ratio for macrophytes & 0.02 \\
\hline Maximum nitrogen:carbon molar ratio for macrophytes & 0.15 \\
\hline Irradiance at maximum nitrogen uptake by phytoplankton \(\left(\mathrm{E} . \mathrm{m}^{-2} . \mathrm{d}^{-1}\right)\) & 4 \\
\hline Autotroph \(\mathrm{Q}_{10}\) value & 1.20 \\
\hline Heterotroph uptake \(\mathrm{Q}_{10}\) value & 1.32 \\
\hline Metabolic and bacterial \(\mathrm{Q}_{10}\) value & 1.44 \\
\hline \(\mathrm{Q}_{10}\) reference temperature & 10 \\
\hline
\end{tabular}

\section*{Sensitivity analysis}

The sensitivity analysis (e2e_run_sens()) tested the influence of individual parameters and the fishing and environmental drivers on the overall likelihood of the observational target data given the 1970-1999 model. The analysis was conducted on the basis of the factorial sampling scheme (Morris, 1991) as implemented in the StrathE2E2 package with 16 trajectories of the model (randomised parameter sets). For each trajectory, multiple model runs were executed, with a different single internal parameter being varied in each successive run, drawn from a symmetrical random uniform distribution. With a total of 450 parameters and drivers being included in the analysis therefore required a total of 7216 model runs each of 40 years.

The analysis included the fixed and fitted parameters of the ecology model, fishing fleet model parameters, harvest ratios on each model guild, environmental and biological event drivers, and the physical configuration parameters (layer thicknesses, inshore/offshore areas, sediment properties).

For the ecology model component, the number of parameters in the sensitivity analysis was greater than the number of input parameters for the model. This was because within the model each prey-predator pair is represented by a discrete uptake function defined by a maximum uptake rate and half-saturation coefficient. These are derived by the combination of the preference matrix and, for each predator, the single values of maximum uptake rate and half-saturation coefficient which are the input parameters to the model.

Of the 450 parameters in the analysis, 120 emerged as having significant sensitivity with respect to overall model fit to the observed data ( \(95 \%\) probability that the distributions of elementary effects were non-zero). Of these \(64 \%\) were ecology model parameters ( \(42 \%\) fitted, \(23 \%\) fixed). Physical configuration parameters made up \(14 \%\) of the significantly sensitive set; harvest ratios only \(7 \%\). This does not mean that model was insensitive to harvest ratios; just that compared to many of the other parameters in the model the harvest ratios were not among the most sensitive for the overall fit given the range of variations imposed in the analysis (Table 39, Figure 13).

The parameter class with the highest proportion of significantly sensitive terms was the fixed ecology model group ( 27 out of 52 ; \(52 \%\) ). The standard deviations of the significantly sensitive parameters indicated that they all had strong interactions with other parameters. \(51 \%\) of the physical configuration parameters had significant sensitivity.

The main conclusions from the sensitivity analysis were:
1) assimilation efficiencies and maximum uptake rates of mid-trophic level guilds were the most sensitive parameters for the overall model. This implies that the food web as a whole was potentially sensitive to processes that might change the community-level feeding responses of these guilds, such as species invasions and replacements, and physiological effects not represented in the model such as ocean acidification (temperature effects are included in the model already and the \(\mathrm{Q}_{10}\) for uptake and metabolic rates emerge as having significant sensitivity).
2) A high proportion of significantly sensitive ecology model parameters (35\%) were independently fixed and not included in the simulated annealing fitting process. This indicates that the fixed parameters were well chosen. Given that the model as a whole was somewhat under-constrained by the observed fitting data, the selection of high-sensitivity parameters for independent constraint was a sound choice.

\section*{Parameter sensitivity analysis of the 1970-1999 maximum likelihood model}

TABLE 39 One-at-a-time factorial sampling scheme sensitivity analysis results based on 16 trajectories, measuring the sensitivity of the overall likelihood of the 1970-1999 model to each of the parameters and drivers. The mean elemental effect (EE_mean) is a measure of the sensitivity of the model to each individual parameter. The corresponding standard deviation of the elemental effect (EE_sd) is a measure of the susceptibility of each parameter to interactions with other parameters. The results are ranked by decreasing values of the absolute value of EE_mean, so the model is most sensitive to the first parameters in the list. The column labelled 'Signif' indicates whether the value of EE_mean was significantly different from zero ( \(\mathrm{p}<0.05\) ). Significant parameters are highlighted by grey-shaded cells. Parameters with EE_mean and EE_sd = NA were set to zero in the baseline model or not included in the sensitivity analysis.
\begin{tabular}{|l|l|l|c|c|c|}
\hline Parameter class & Parameter description & Model guild or feature & EE_mean & EE_sd & Signif. \\
\hline Ecology model fixed & Assimilation efficiency & Planktivorous fish & -3.6625 & 0.6965 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Omnivorous zooplankton by carnivorous zooplankton & -3.5883 & 0.7679 & sig \\
\hline Ecology model fixed & Assimilation efficiency & Carnivorous zooplankton & -3.2346 & 0.8094 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Omnivorous zooplankton by planktivorous fish & -2.8473 & 0.8103 & sig \\
\hline Ecology model fixed & Assimilation efficiency & Demersal fish larvae & -2.8221 & 2.4440 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Omnivorous zooplankton by demersal fish larvae & -2.5204 & 2.3415 & sig \\
\hline Ecology model fixed & Assimilation efficiency & Omnivorous zooplankton & -2.4244 & 2.1161 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Phytoplankton by omnivorous zooplankton & -2.2406 & 1.0706 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Phytoplankton by omnivorous zooplankton & -2.1823 & 2.2996 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Omnivorous zooplankton by carnivorous zooplankton & -2.1378 & 2.0290 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Omnivorous zooplankton by demersal fish larvae & -2.0745 & 1.0685 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Omnivorous zooplankton by planktivorous fish & -1.6102 & 1.2772 & sig \\
\hline Ecology model fixed & Background metabolic rate coefficient & Planktivorous fish & -1.2816 & 0.9279 & sig \\
\hline Ecology model fixed & Background metabolic rate coefficient & Carnivorous zooplankton & -1.1676 & 1.6671 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Nitrate by phytoplankton & -0.7665 & 0.7604 & sig \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Physical configuration & Vertical thickness & Offshore zone upper layer & -0.6712 & 0.7987 & sig \\
\hline Ecology model fitted & Density dependent mortality coefficient & Phytoplankton upper layer & -0.6194 & 0.7932 & sig \\
\hline Environmental driver & Boundary concentration & Lower layer nitrate & -0.5881 & 0.8173 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Carnivorous zooplankton by planktivorous fish & -0.5332 & 0.8725 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivorous zooplankton by planktivorous fish & -0.5243 & 0.6670 & sig \\
\hline Ecology model fixed & Background metabolic rate coefficient & Demersal fish & -0.5155 & 0.7296 & sig \\
\hline Physical configuration & Vertical thickness & Offshore zone lower layer & -0.4606 & 0.6248 & sig \\
\hline Ecology model fixed & Maximum exploitable fraction of stock & Demersal fish & -0.4599 & 0.6137 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Demersal fish larvae by planktivorous fish & -0.4035 & 0.6252 & sig \\
\hline Biological event driver & Spawning rate & Demersal fish & -0.3835 & 1.1114 & ns \\
\hline Ecology model fixed & Annual fecundity & Demersal fish & -0.3835 & 1.1114 & ns \\
\hline Ecology model fixed & Q10 & Heterotrophic uptake & -0.3792 & 0.6648 & sig \\
\hline Ecology model fixed & Q10 reference temperature & All temperature dependent processes & -0.3473 & 0.5915 & sig \\
\hline Ecology model fixed & Saturation light intensity for uptake & Nutrient by phytoplankton & -0.3391 & 0.3910 & sig \\
\hline Ecology model fixed & Background metabolic rate coefficient & Omnivorous zooplankton & -0.3349 & 0.5699 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Nitrate by phytoplankton & -0.3075 & 0.3207 & sig \\
\hline Ecology model fixed & Q10 & Autotrophic uptake & -0.3069 & 0.5698 & sig \\
\hline Ecology model fixed & Assimilation efficiency & Demersal fish & -0.2921 & 0.9224 & ns \\
\hline Harvest ratio & Harvest ratio offshore & Demersal fish & -0.2481 & 0.4380 & sig \\
\hline Biological event driver & Recruitment rate & Demersal fish & -0.2289 & 0.5044 & ns \\
\hline Ecology model fixed & Maximum exploitable fraction of stock & Planktivorous fish & -0.2246 & 0.3973 & sig \\
\hline Ecology model fitted & Density dependent mortality coefficient & Carnivorous zooplankton & -0.2039 & 0.8739 & ns \\
\hline Environmental driver & Sea surface irradiance & Inshore and offshore zones & -0.1995 & 0.4546 & ns \\
\hline Harvest ratio & Harvest ratio offshore & Planktivorous fish & -0.1553 & 0.3158 & ns \\
\hline Ecology model fitted & Density dependent mortality coefficient & Demersal fish & -0.1539 & 0.3946 & ns \\
\hline Physical configuration & Coefficient & Light attenuation coefficient vs SPM & -0.1526 & 0.2887 & sig \\
\hline Ecology model fitted & Density dependent mortality coefficient & Phytoplankton lower layer & -0.1441 & 0.3600 & ns \\
\hline Ecology model fixed & Assimilation efficiency & Carnivore/scavenge feeding benthos larvae & -0.1370 & 0.2756 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Demersal fish larvae by planktivorous fish & -0.1333 & 0.7183 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Suspension/deposit feeding benthos by demersal fish & -0.1186 & 0.6585 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ecology model fixed & Assimilation efficiency & Suspension/deposit feeding benthos larvae & -0.1154 & 0.2465 & ns \\
\hline Ecology model fixed & Assimilation efficiency & Birds & -0.1149 & 0.0904 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Suspended detritus by suspension/deposit feeding benthos larvae & -0.1008 & 0.1877 & sig \\
\hline Ecology model fitted & Density dependent mortality coefficient & Planktivorous fish & -0.0961 & 0.3005 & ns \\
\hline Environmental driver & Suspended particulate matter & Offshore zone & -0.0908 & 0.2183 & ns \\
\hline Physical configuration & Vertical thickness & Inshore zone & -0.0802 & 0.3032 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspension/deposit feeding benthos by demersal fish & -0.0783 & 0.2371 & ns \\
\hline Harvest ratio & Harvest ratio inshore & Demersal fish & -0.0768 & 0.2227 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Ammonia by phytoplankton & -0.0757 & 0.1484 & sig \\
\hline Physical configuration & Intercept & Light attenuation coefficient vs SPM & -0.0665 & 0.1355 & ns \\
\hline Fishing fleet model & Discard rate offshore & Cetaceans & -0.0662 & 0.0446 & sig \\
\hline Environmental driver & Temperature & Offshore zone upper layer & -0.0613 & 0.5035 & ns \\
\hline Ecology model fixed & Background metabolic rate coefficient & Birds & -0.0545 & 0.0714 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Planktivorous fish by demersal fish & -0.0518 & 0.1447 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Suspended detritus by carnivore/scavenge feeding benthos larvae & -0.0483 & 0.1526 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Planktivorous fish by birds & -0.0444 & 0.0408 & sig \\
\hline Ecology model fitted & Density dependent mortality coefficient & Suspension/deposit feeding benthos & -0.0426 & 0.1783 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Ammonia by phytoplankton & -0.0424 & 0.2467 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Suspension/deposit feeding benthos larvae by carnivorous zooplankton & -0.0420 & 0.1940 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Phytoplankton by suspension/deposit feeding benthos & -0.0414 & 0.1048 & ns \\
\hline Physical configuration & Vertical thickness & Benthic boundary feeding layer & -0.0402 & 0.1262 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Phytoplankton by carnivore/scavenge feeding benthos larvae & -0.0402 & 0.1987 & ns \\
\hline Ecology model fixed & Background metabolic rate coefficient & Pinnipeds & -0.0381 & 0.0466 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Suspension/deposit feeding benthos larvae by planktivorous fish & -0.0374 & 0.0934 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Demersal fish larvae by carnivorous zooplankton & -0.0362 & 0.1413 & ns \\
\hline Ecology model fixed & Assimilation efficiency & Cetaceans & -0.0358 & 0.0188 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivore/scavenge feeding benthos larvae by omnivorous zooplankton & -0.0349 & 0.2127 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ecology model fitted & Maximum uptake rate & Suspended detritus by suspension/deposit feeding benthos & -0.0344 & 0.3513 & ns \\
\hline Ecology model fixed & Assimilation efficiency & Suspension/deposit feeding benthos & -0.0337 & 0.3413 & ns \\
\hline Ecology model fixed & Assimilation efficiency & Pinnipeds & -0.0330 & 0.0496 & sig \\
\hline Fishing fleet model & Coefficient & Demersal fish quota-limited undersize vs nitrogen mass & -0.0317 & 0.1777 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspended detritus by suspension/deposit feeding benthos & -0.0313 & 0.1528 & ns \\
\hline Ecology model fixed & Background metabolic rate coefficient & Suspension/deposit feeding benthos & -0.0298 & 0.1011 & ns \\
\hline Ecology model fitted & Denitrification rate coefficient & Sediment porewater nitrate & -0.0290 & 0.0576 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Planktivorous fish larvae by planktivorous fish & -0.0285 & 0.0747 & ns \\
\hline Physical configuration & Proportion of depth range occupied & Phytoplankton inshore & -0.0265 & 0.0886 & ns \\
\hline Environmental driver & Suspended particulate matter & Inshore zone & -0.0261 & 0.0824 & ns \\
\hline Environmental driver & Boundary volume inflow rate & Lower layer offshore & -0.0248 & 0.1538 & ns \\
\hline Ecology model fixed & Background metabolic rate coefficient & Cetaceans & -0.0230 & 0.0212 & sig \\
\hline Ecology model fixed & Assimilation efficiency & Planktivorous fish larvae & -0.0228 & 0.0750 & ns \\
\hline Fishing fleet model & Discard rate offshore & Demersal fish & -0.0217 & 0.1422 & ns \\
\hline Ecology model fitted & Conversion rate coefficient & Labile to refractory sediment detritus & -0.0216 & 0.1194 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspended detritus by carnivore/scavenge feeding benthos larvae & -0.0196 & 0.0905 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivorous zooplankton by demersal fish & -0.0193 & 0.0829 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Demersal fish larvae by carnivorous zooplankton & 0.0183 & 0.1414 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspension/deposit feeding benthos larvae by demersal fish larvae & -0.0182 & 0.0774 & ns \\
\hline Ecology model fitted & Density dependent mortality coefficient & Carnivore/scavenge feeding benthos & -0.0180 & 0.0615 & ns \\
\hline Environmental driver & Vertical diffusion rate & Offshore zone & -0.0176 & 0.1588 & ns \\
\hline Ecology model fitted & Coefficient & Macrophyte self shading & -0.0158 & 0.0079 & sig \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Carnivorous zooplankton offshore & 0.0158 & 0.1118 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Demersal fish by pinnipeds & -0.0152 & 0.0225 & sig \\
\hline Ecology model fitted & Nitrification rate coefficient & Lower layer ammonia & 0.0148 & 0.0425 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Carnivore/scavenge feeding benthos larvae by planktivorous fish & -0.0146 & 0.0490 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Carnivorous zooplankton by demersal fish & 0.0143 & 0.1090 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Environmental driver & River volume inflow rate & Inshore zone & 0.0140 & 0.1085 & ns \\
\hline Harvest ratio & Harvest ratio offshore & Carnivorous zooplankton & -0.0139 & 0.0304 & ns \\
\hline Ecology model fixed & Maximum exploitable fraction of stock & Carnivorous zooplankton & -0.0139 & 0.0304 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Omnivorous zooplankton by planktivorous fish larvae & -0.0136 & 0.0541 & ns \\
\hline Environmental driver & Boundary concentration & River nitrate & 0.0135 & 0.0960 & ns \\
\hline Ecology model fixed & Maximum exploitable fraction of stock & Carnivore/scavenge feeding benthos & 0.0134 & 0.0208 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Carnivore/scavenge feeding benthos larvae by omnivorous zooplankton & -0.0132 & 0.2488 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Suspension/deposit feeding benthos larvae by demersal fish larvae & 0.0131 & 0.0944 & ns \\
\hline Biological event driver & Recruitment rate & Suspension/deposit feeding benthos & 0.0131 & 0.0967 & ns \\
\hline Physical configuration & Sediment porosity & Offshore sandy sediments & -0.0130 & 0.0198 & sig \\
\hline Environmental driver & Boundary concentration & Upper layer offshore nitrate & -0.0125 & 0.2323 & ns \\
\hline Environmental driver & Boundary concentration & Lower layer ammonia & -0.0124 & 0.0547 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Demersal fish by birds & -0.0120 & 0.0158 & sig \\
\hline Physical configuration & Sediment porosity & Inshore sandy sediments & -0.0115 & 0.0260 & ns \\
\hline Biological event driver & Spawning rate & Suspension/deposit feeding benthos & -0.0112 & 0.0527 & ns \\
\hline Ecology model fixed & Annual fecundity & Suspension/deposit feeding benthos & -0.0112 & 0.0527 & ns \\
\hline Ecology model fitted & Maximum uptake rate & demersal fish larvae by demersal fish & -0.0111 & 0.0497 & ns \\
\hline Environmental driver & Boundary concentration & Inshore nitrate & 0.0106 & 0.1158 & ns \\
\hline Environmental driver & Boundary volume inflow rate & Inshore zone & 0.0103 & 0.0681 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Planktivorous fish by cetaceans & -0.0102 & 0.0328 & ns \\
\hline Fishing fleet model & Damage mortality rate by fishing gears & Carnivore/scavenge feeding benthos inshore & -0.0097 & 0.0104 & sig \\
\hline Harvest ratio & Harvest ratio offshore & Carnivore/scavenge feeding benthos & 0.0097 & 0.0143 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & demersal fish larvae by demersal fish & 0.0089 & 0.0463 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Planktivorous fish larvae by planktivorous fish & 0.0088 & 0.0779 & ns \\
\hline Ecology model fixed & Q10 & Metabolism and microbial rates & 0.0087 & 0.3557 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Planktivorous fish by pinnipeds & -0.0087 & 0.0177 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Carnivore/scavenge feeding benthos larvae by carnivorous zooplankton & -0.0082 & 0.0542 & ns \\
\hline Ecology model fixed & Background metabolic rate coefficient & Carnivore/scavenge feeding benthos larvae & -0.0082 & 0.0525 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Environmental driver & Temperature & Inshore zone & 0.0080 & 0.2322 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Demersal fish by cetaceans & -0.0080 & 0.0155 & sig \\
\hline Ecology model fitted & Scaling parameter & Linking demersal fish survey and model abundance & -0.0079 & 0.0500 & ns \\
\hline Physical configuration & Hydraulic conductivity & Offshore muddy sediments & -0.0077 & 0.0096 & sig \\
\hline Environmental driver & Significant wave height & Inshore zone & 0.0074 & 0.0136 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspended detritus by suspension/deposit feeding benthos larvae & 0.0074 & 0.0762 & ns \\
\hline Ecology model fixed & Assimilation efficiency & Carnivore/scavenge feeding benthos & 0.0072 & 0.0537 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Demersal fish by pinnipeds & -0.0072 & 0.0100 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivore/scavenge feeding benthos by demersal fish & -0.0071 & 0.0392 & ns \\
\hline Ecology model fitted & Bedding DeAngelis parameter & Cetaceans & -0.0069 & 0.0147 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Planktivorous fish larvae by demersal fish & -0.0066 & 0.0263 & ns \\
\hline Fishing fleet model & Discard rate inshore & Demersal fish & -0.0065 & 0.0643 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Carnivore/scavenge feeding benthos by demersal fish & 0.0062 & 0.0511 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Planktivorous fish larvae by demersal fish & 0.0057 & 0.0283 & ns \\
\hline Environmental driver & Boundary concentration & Upper layer offshore detritus & -0.0057 & 0.0201 & ns \\
\hline Biological event driver & Immigration rate & Migratory fish & -0.0056 & 0.0045 & sig \\
\hline Fishing fleet model & Discard rate inshore & Carnivore/scavenge feeding benthos & -0.0056 & 0.0075 & sig \\
\hline Environmental driver & Temperature & Lower layer offshore & 0.0055 & 0.0489 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivore/scavenge feeding benthos larvae by planktivorous fish & 0.0054 & 0.0454 & ns \\
\hline Ecology model fitted & Disintigration rate & Macrophyte debris to detritus & -0.0053 & 0.0079 & sig \\
\hline Ecology model fitted & Bedding DeAngelis parameter & Birds & -0.0053 & 0.0223 & ns \\
\hline Ecology model fitted & Mineralisation rate coefficient & Labile sediment detritus & -0.0052 & 0.0185 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Planktivorous fish by birds & -0.0052 & 0.0150 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspension/deposit feeding benthos larvae by planktivorous fish & 0.0052 & 0.0759 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Planktivorous fish by cetaceans & -0.0051 & 0.0104 & ns \\
\hline Ecology model fitted & Conversion rate & Macrophyte debris to beach-cast & 0.0051 & 0.0079 & sig \\
\hline Physical configuration & Hydraulic conductivity & Offshore sandy sediments & -0.0050 & 0.0066 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Omnivorous zooplankton by planktivorous fish larvae & 0.0050 & 0.0484 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivore/scavenge feeding benthos larvae by carnivorous zooplankton & 0.0050 & 0.0478 & ns \\
\hline Ecology model fitted & Bedding DeAngelis parameter & Pinnipeds & -0.0050 & 0.0070 & sig \\
\hline Ecology model fixed & Background metabolic rate coefficient & Carnivore/scavenge feeding benthos & -0.0050 & 0.0114 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Migratory fish by cetaceans & -0.0048 & 0.0045 & sig \\
\hline Environmental driver & Boundary concentration & Inshore phytoplankton & 0.0046 & 0.0313 & ns \\
\hline Harvest ratio & Harvest ratio inshore & Carnivore/scavenge feeding benthos & 0.0044 & 0.0066 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspension/deposit feeding benthos larvae by carnivorous zooplankton & 0.0043 & 0.1502 & ns \\
\hline Ecology model fitted & Density dependent mortality coefficient & Cetaceans & -0.0043 & 0.0057 & sig \\
\hline Ecology model fixed & Maximum exploitable fraction of stock & Cetaceans & -0.0042 & 0.0066 & sig \\
\hline Harvest ratio & Harvest ratio offshore & Cetaceans & -0.0042 & 0.0066 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Planktivorous fish by demersal fish & 0.0041 & 0.2413 & ns \\
\hline Physical configuration & Sediment porosity & Inshore coarse sediments & -0.0041 & 0.0094 & ns \\
\hline Fishing fleet model & Exponent & Demersal fish quota-limited undersize vs nitrogen mass & 0.0040 & 0.0364 & ns \\
\hline Ecology model fixed & Saturation light intensity for uptake & Nutrient by macrophytes & -0.0040 & 0.0032 & sig \\
\hline Fishing fleet model & Discard rate all areas & Demersal fish all areas & -0.0040 & 0.2204 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Corpses by carnivore/scavenge feeding benthos & 0.0039 & 0.0118 & ns \\
\hline Biological event driver & Spawning rate & Carnivore/scavenge feeding benthos & -0.0039 & 0.0442 & ns \\
\hline Ecology model fixed & Annual fecundity & Carnivore/scavenge feeding benthos & -0.0039 & 0.0443 & ns \\
\hline Ecology model fitted & Density dependent mortality coefficient & Birds & -0.0038 & 0.0093 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Demersal fish by birds & 0.0038 & 0.0082 & ns \\
\hline Ecology model fitted & Conversion rate coefficient & Corpses to labile sediment detritus & -0.0036 & 0.0065 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Planktivorous fish larvae by carnivorous zooplankton & -0.0036 & 0.0168 & ns \\
\hline Biological event driver & Spawning rate & Planktivorous fish & 0.0036 & 0.0537 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Phytoplankton by suspension/deposit feeding benthos & 0.0036 & 0.0935 & ns \\
\hline Ecology model fixed & Annual fecundity & Planktivorous fish & 0.0036 & 0.0537 & ns \\
\hline Environmental driver & Volume outflow rate & Inshore zone & 0.0035 & 0.0277 & ns \\
\hline Biological event driver & Recruitment rate & Carnivore/scavenge feeding benthos & 0.0035 & 0.0091 & ns \\
\hline Fishing fleet model & Discard rate offshore & Carnivore/scavenge feeding benthos & -0.0034 & 0.0045 & sig \\
\hline Ecology model fixed & Background metabolic rate coefficient & Suspension/deposit feeding benthos larvae & 0.0033 & 0.0504 & ns \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|c|}
\hline Ecology model fitted & Density dependent mortality coefficient & Omnivorous zooplankton & 0.0032 & 0.0238 \\
\hline Ecology model fitted & Uptake half saturation coefficient & Migratory fish by pinnipeds & -0.0032 & 0.0039 \\
\hline Ecology model fitted & Maximum uptake rate & \begin{tabular}{l} 
Suspension/deposit feeding benthos by \\
carnivore/scavenge feeding benthos
\end{tabular} \\
\hline Physical configuration & Proportion of depth range occupied & Macrophytes inshore & -0.0032 & 0.0872 \\
\hline Ecology model fitted & Maximum uptake rate & \begin{tabular}{l} 
Suspension/deposit feeding benthos larvae by \\
planktivorous fish larvae
\end{tabular} & -0.0031 & 0.0027 \\
\hline sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Corpses by carnivore/scavenge feeding benthos & -0.0031 & 0.0155 \\
\hline Environmental driver & Boundary concentration & Upper layer offshore ammonia & -0.0030 & 0.0073 \\
\hline Fishing fleet model & Damage mortality rate by fishing gears & Suspension/deposit feeding benthos offshore & -0.0029 & 0.0180 \\
\hline Ecology model fitted & Maximum uptake rate & ns \\
\hline Environmental driver & Boundary concentration & Inshore detritus & -0.0028 & 0.0182 \\
\hline Ecology model fitted & Maximum uptake rate & Carnivorous zooplankton by birds & 0.0027 & 0.0184 \\
\hline Ecology model fitted & Density dependent mortality coefficient & Pinnipeds & 0.0026 & 0.0186 \\
\hline Environmental driver & Boundary concentration & River ammonia & -0.0026 & 0.0069 \\
\hline Ecology model fitted & Threshold biomass for zero exploitable & Cetaceans offshore & 0.0026 & 0.0144 \\
\hline stock remaining & ns \\
\hline Ecology model fitted & Sinking rate coefficient & Upper layer suspended detritus & 0.0025 & 0.0162 \\
\hline ns \\
\hline Fishing fleet model & Damage mortality rate by fishing gears & Carnivore/scavenge feeding benthos offshore & 0.0025 & 0.0084 \\
\hline Ecology model fitted & Maximum uptake rate & Migratory fish by birds & 0.0025 & 0.0466 \\
\hline Ecology model fitted & Conversion rate coefficient & Discards to corpses & -0.0024 & 0.0163 \\
\hline Environmental driver & Volume exchange rate & ns & -0.0024 & 0.0025
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ecology model fixed & Inedible biomass inshore & Carnivorous zooplankton & -0.0018 & 0.0244 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivore/scavenge feeding benthos larvae by demersal fish larvae & -0.0017 & 0.0096 & ns \\
\hline Environmental driver & Atmospheric deposition rate & Inshore nitrate & 0.0017 & 0.0073 & ns \\
\hline Ecology model fitted & Density dependent mortality coefficient & Suspension/deposit feeding benthos larvae & 0.0017 & 0.0186 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Carnivore/scavenge feeding benthos larvae by demersal fish larvae & 0.0016 & 0.0105 & ns \\
\hline Ecology model fixed & Assimilation efficiency & Migratory fish & 0.0016 & 0.0025 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Migratory fish by pinnipeds & 0.0016 & 0.0061 & ns \\
\hline Ecology model fitted & Active migration coefficient & Planktivorous fish & 0.0015 & 0.0140 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Phytoplankton by carnivore/scavenge feeding benthos larvae & 0.0015 & 0.1828 & ns \\
\hline Environmental driver & Boundary concentration & Inshore ammonia & 0.0014 & 0.0102 & ns \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Carnivore/scavenge feeding benthos inshore & -0.0014 & 0.0019 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Demersal fish by demersal fish & 0.0014 & 0.0088 & ns \\
\hline Biological event driver & Recruitment rate & Planktivorous fish & -0.0013 & 0.0035 & ns \\
\hline Ecology model fitted & Remobilisation parameter & Refractory to labile sediment detritus & 0.0013 & 0.0797 & ns \\
\hline Fishing fleet model & Coefficient & Demersal fish non-quota undersize vs nitrogen mass & -0.0013 & 0.0274 & ns \\
\hline Environmental driver & Boundary concentration & Upper layer offshore phytoplankton & 0.0013 & 0.0328 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Phytoplankton by suspension/deposit feeding benthos larvae & -0.0012 & 0.0064 & ns \\
\hline Physical configuration & Sediment porosity & Offshore muddy sediments & -0.0012 & 0.0010 & sig \\
\hline Ecology model fitted & Carbon exudation rate & Macrophytes & 0.0012 & 0.0033 & ns \\
\hline Ecology model fixed & Maximum exploitable fraction of stock & Suspension/deposit feeding benthos & -0.0011 & 0.0007 & sig \\
\hline Harvest ratio & Harvest ratio inshore & Planktivorous fish & 0.0011 & 0.0786 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Corpses by birds & -0.0011 & 0.0031 & ns \\
\hline Physical configuration & Sediment porosity & Offshore coarse sediments & -0.0011 & 0.0018 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspension/deposit feeding benthos by carnivore/scavenge feeding benthos & -0.0010 & 0.0206 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Carbon by macrophytes & 0.0010 & 0.0035 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Phytoplankton by suspension/deposit feeding benthos larvae & 0.0010 & 0.0053 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Migratory fish by cetaceans & 0.0010 & 0.0018 & sig \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ecology model fitted & Maximum uptake rate & Omnivorous zooplankton by migratory fish & 0.0010 & 0.0075 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Discards by birds & -0.0010 & 0.0016 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Sediment detritus by suspension/deposit feeding benthos & 0.0010 & 0.0910 & ns \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Carnivore/scavenge feeding benthos offshore & -0.0009 & 0.0013 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspension/deposit feeding benthos larvae by omnivorous zooplankton & -0.0009 & 0.0056 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Suspension/deposit feeding benthos larvae by omnivorous zooplankton & 0.0008 & 0.0063 & ns \\
\hline Environmental driver & Atmospheric deposition rate & Offshore nitrate & 0.0008 & 0.0065 & ns \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Demersal fish offshore & 0.0008 & 0.0054 & ns \\
\hline Biological event driver & Emigration rate & Migratory fish & -0.0008 & 0.0063 & ns \\
\hline Environmental driver & Atmospheric deposition rate & Inshore ammonia & 0.0008 & 0.0053 & ns \\
\hline Ecology model fixed & Maximum exploitable fraction of stock & Migratory fish & -0.0007 & 0.0015 & sig \\
\hline Harvest ratio & Harvest ratio offshore & Migratory fish & -0.0007 & 0.0014 & sig \\
\hline Environmental driver & Boundary concentration & Lower layer detritus & 0.0007 & 0.0523 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Corpses by demersal fish & 0.0007 & 0.0040 & ns \\
\hline Fishing fleet model & Exponent & Demersal fish non-quota proportion in catch vs nitrogen mass & 0.0007 & 0.0075 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Corpses by demersal fish & -0.0006 & 0.0032 & ns \\
\hline Ecology model fixed & Inedible biomass offshore & Carnivorous zooplankton & -0.0006 & 0.0096 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspended detritus by omnivorous zooplankton & -0.0006 & 0.0045 & ns \\
\hline Ecology model fitted & Mineralistation rate scaling parameter & Refractory sediment detritus & 0.0005 & 0.0104 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Discards by demersal fish & -0.0005 & 0.0023 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Migratory fish by demersal fish & -0.0005 & 0.0023 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Migratory fish by demersal fish & 0.0005 & 0.0025 & ns \\
\hline Environmental driver & Natural disturbance rate & Offshore sandy sediments & 0.0005 & 0.0029 & ns \\
\hline Physical configuration & Physical disturbance depth & Offshore sandy sediments & 0.0005 & 0.0029 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Omnivorous zooplankton by migratory fish & -0.0005 & 0.0074 & ns \\
\hline Harvest ratio & Harvest ratio offshore & Suspension/deposit feeding benthos & -0.0004 & 0.0004 & sig \\
\hline Fishing fleet model & Coefficient & Demersal fish non-quota proportion in catch vs nitrogen mass & -0.0004 & 0.0112 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Fishing fleet model & Damage mortality rate by fishing gears & Suspension/deposit feeding benthos inshore & 0.0004 & 0.0029 & ns \\
\hline Ecology model fixed & Background metabolic rate coefficient & Planktivorous fish larvae & 0.0004 & 0.0021 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Nitrate by macrophytes & 0.0004 & 0.0007 & sig \\
\hline Fishing fleet model & Exponent & Demersal fish non-quota undersize vs nitrogen mass & 0.0004 & 0.0053 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Discards by demersal fish & 0.0004 & 0.0023 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Nitrate by macrophytes & -0.0004 & 0.0006 & sig \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Demersal fish inshore & 0.0004 & 0.0030 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Migratory fish by birds & -0.0004 & 0.0012 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Planktivorous fish larvae by migratory fish & 0.0004 & 0.0016 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Carnivore/scavenge feeding benthos larvae by planktivorous fish larvae & -0.0004 & 0.0026 & ns \\
\hline Environmental driver & Atmospheric deposition rate & Offshore ammonia & -0.0004 & 0.0038 & ns \\
\hline Fishing fleet model & Discard rate offshore & Migratory fish & 0.0004 & 0.0005 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Planktivorous fish larvae by migratory fish & -0.0004 & 0.0014 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivorous zooplankton by migratory fish & -0.0003 & 0.0019 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Carnivorous zooplankton by cetaceans & 0.0003 & 0.0009 & ns \\
\hline Fishing fleet model & Discard rate offshore & Planktivorous fish & 0.0003 & 0.0005 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivore/scavenge feeding benthos larvae by planktivorous fish larvae & 0.0003 & 0.0025 & ns \\
\hline Physical configuration & Hydraulic conductivity & Inshore coarse sediments & -0.0003 & 0.0006 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Planktivorous fish by pinnipeds & -0.0003 & 0.0092 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Carnivorous zooplankton by migratory fish & 0.0003 & 0.0019 & ns \\
\hline Physical configuration & Hydraulic conductivity & Inshore muddy sediments & -0.0003 & 0.0003 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Corpses by birds & 0.0002 & 0.0017 & ns \\
\hline Ecology model fitted & Density dependent mortality coefficient & Planktivorous fish larvae & 0.0002 & 0.0011 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Suspended detritus by omnivorous zooplankton & 0.0002 & 0.0028 & ns \\
\hline Ecology model fitted & Density dependent mortality coefficient & Demersal fish larvae & -0.0002 & 0.0007 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Demersal fish larvae by migratory fish & 0.0002 & 0.0009 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Demersal fish larvae by migratory fish & -0.0002 & 0.0009 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Omnivorous zooplankton by cetaceans & 0.0002 & 0.0007 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ecology model fitted & Maximum uptake rate & Ammonia by macrophytes & 0.0002 & 0.0003 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivorous zooplankton by birds\&mammala & 0.0002 & 0.0036 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Ammonia by macrophytes & -0.0002 & 0.0002 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Corpses by pinnipeds & -0.0002 & 0.0007 & ns \\
\hline Physical configuration & Sediment porosity & Inshore muddy sediments & -0.0002 & 0.0002 & sig \\
\hline Fishing fleet model & Offal as proportion of live weight & All guilds & 0.0001 & 0.0002 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Corpses by pinnipeds & 0.0001 & 0.0012 & ns \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Suspension/deposit feeding benthos offshore & -0.0001 & 0.0002 & sig \\
\hline Harvest ratio & Harvest ratio inshore & Suspension/deposit feeding benthos & -0.0001 & 0.0002 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivorous zooplankton by cetaceans & -0.0001 & 0.0003 & ns \\
\hline Ecology model fixed & N:C molar ratio maximum & Macrophytes & -0.0001 & 0.0034 & ns \\
\hline Environmental driver & Natural disturbance rate & Inshore sandy sediments & 0.0001 & 0.0007 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Suspension/deposit feeding benthos larvae by migratory fish & 0.0001 & 0.0003 & ns \\
\hline Fishing fleet model & Penetration depth by fishing gears & Offshore muddy sediments & -0.0001 & 0.0012 & ns \\
\hline Ecology model fixed & Maximum exploitable fraction of stock & Pinnipeds & 0.0001 & 0.0007 & ns \\
\hline Physical configuration & Physical disturbance depth & Inshore sandy sediments & 9.53E-05 & 6.98E-04 & ns \\
\hline Fishing fleet model & Processing at sea rate offshore & Demersal fish & 9.17E-05 & 1.59E-04 & sig \\
\hline Fishing fleet model & Penetration depth by fishing gears & Offshore sandy sediments & 8.92E-05 & 6.41E-04 & ns \\
\hline Physical configuration & Hydraulic conductivity & Offshore coarse sediments & -8.39E-05 & 1.27E-04 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspension/deposit feeding benthos larvae by migratory fish & -8.20E-05 & \(1.58 \mathrm{E}-04\) & sig \\
\hline Harvest ratio & Harvest ratio offshore & Pinnipeds & 8.06E-05 & 3.95E-04 & ns \\
\hline Ecology model fixed & \(\mathrm{N}: \mathrm{C}\) molar ratio minimum & Macrophytes & -7.65E-05 & 9.42E-05 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Omnivorous zooplankton by cetaceans & -7.35E-05 & \(1.71 \mathrm{E}-04\) & ns \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Planktivorous fish inshore & -7.08E-05 & 7.75E-04 & ns \\
\hline Fishing fleet model & Abrasion rate by fishing gears & Offshore muddy sediments & -7.02E-05 & 1.31E-03 & ns \\
\hline Harvest ratio & Harvest ratio inshore & Pinnipeds & \(6.63 \mathrm{E}-05\) & 4.27E-04 & ns \\
\hline Ecology model fitted & Density dependent mortality coefficient & Carnivore/scavenge feeding benthos larvae & -6.56E-05 & 2.25E-04 & ns \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Planktivorous fish offshore & -6.44E-05 & 1.26E-03 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Suspension/deposit feeding benthos inshore & -5.55E-05 & 8.85E-05 & sig \\
\hline Fishing fleet model & Discard rate inshore & Planktivorous fish & \(5.50 \mathrm{E}-05\) & 9.29E-05 & sig \\
\hline Physical configuration & Physical disturbance depth & Inshore muddy sediments & -5.40E-05 & \(4.64 \mathrm{E}-05\) & sig \\
\hline Ecology model fitted & Maximum uptake rate & Discards by pinnipeds & \(5.28 \mathrm{E}-05\) & 1.99E-04 & ns \\
\hline Harvest ratio & Harvest ratio offshore & Birds & -4.82E-05 & 7.36E-05 & sig \\
\hline Environmental driver & Natural disturbance rate & Offshore muddy sediments & -4.74E-05 & 2.67E-03 & ns \\
\hline Fishing fleet model & Processing at sea rate inshore & Carnivore/scavenge feeding benthos & -4.68E-05 & 6.27E-05 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Sediment detritus by suspension/deposit feeding benthos & -4.34E-05 & \(9.26 \mathrm{E}-05\) & ns \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Pinnipeds inshore & -4.33E-05 & 1.12E-04 & ns \\
\hline Physical configuration & Bioturbation depth & Offshore muddy sediments & -4.32E-05 & 6.34E-05 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Pinnipeds by cetaceans & -4.20E-05 & \(9.34 \mathrm{E}-05\) & ns \\
\hline Ecology model fitted & Active migration coefficient & Birds & -3.84E-05 & \(4.19 \mathrm{E}-05\) & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivore/scavenge feeding benthos larvae by migratory fish & -3.73E-05 & \(9.90 \mathrm{E}-05\) & ns \\
\hline Ecology model fitted & Maximum uptake rate & Macrophytes by carnivorous/scavenge feeding benthos & 3.70E-05 & 1.46E-04 & ns \\
\hline Physical configuration & Physical disturbance depth & Offshore muddy sediments & -3.64E-05 & 2.65E-03 & ns \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Pinnipeds offshore & -3.49E-05 & 6.66E-05 & sig \\
\hline Fishing fleet model & Abrasion rate by fishing gears & Offshore coarse sediments & -3.43E-05 & 1.04E-04 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Discards by pinnipeds & -3.27E-05 & 6.75E-05 & ns \\
\hline Ecology model fitted & Nitrification rate coefficient & Sediment porewater ammonia & -3.26E-05 & 4.17E-05 & sig \\
\hline Ecology model fitted & Denitrification rate coefficient & Lower layer nitrate & -3.24E-05 & 6.06E-05 & sig \\
\hline Physical configuration & Bioturbation depth & Inshore coarse sediments & -3.23E-05 & 6.01E-05 & sig \\
\hline Ecology model fitted & Active migration coefficient & Demersal fish & -3.15E-05 & 4.05E-03 & ns \\
\hline Fishing fleet model & Abrasion rate by fishing gears & Offshore rock & -3.13E-05 & 3.94E-05 & sig \\
\hline Ecology model fitted & Uptake half saturation coefficient & Macrophyte debris by carnivorous/scavenge feeding benthos & \(3.09 \mathrm{E}-05\) & \(1.14 \mathrm{E}-04\) & ns \\
\hline Physical configuration & Physical disturbance depth & Offshore coarse sediments & -2.92E-05 & 4.56E-05 & sig \\
\hline Ecology model fitted & Maximum uptake rate & Pinnipeds by cetaceans & \(2.91 \mathrm{E}-05\) & \(1.41 \mathrm{E}-04\) & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Macrophytes by carnivorous/scavenge feeding benthos & -2.83E-05 & 4.13E-05 & sig \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ecology model fixed & Background metabolic rate coefficient & Migratory fish & -2.83E-05 & 3.39E-04 & ns \\
\hline Fishing fleet model & Penetration depth by fishing gears & Offshore coarse sediments & -2.65E-05 & 3.43E-05 & sig \\
\hline Ecology model fitted & Density dependent mortality coefficient & Migratory fish & \(2.56 \mathrm{E}-05\) & 1.39E-04 & ns \\
\hline Fishing fleet model & Penetration depth by fishing gears & Inshore muddy sediments & -2.56E-05 & 4.34E-05 & sig \\
\hline Fishing fleet model & Penetration depth by fishing gears & Inshore coarse sediments & -2.55E-05 & 5.55E-05 & ns \\
\hline Fishing fleet model & Abrasion rate by fishing gears & Offshore sandy sediments & \(2.50 \mathrm{E}-05\) & 4.74E-04 & ns \\
\hline Environmental driver & Natural disturbance rate & Offshore coarse sediments & -2.39E-05 & 3.98E-05 & sig \\
\hline Fishing fleet model & Abrasion rate by fishing gears & Inshore sandy sediments & \(2.34 \mathrm{E}-05\) & 1.54E-04 & ns \\
\hline Ecology model fitted & Uptake half saturation coefficient & Discards by cetaceans & -2.34E-05 & 1.20E-05 & sig \\
\hline Harvest ratio & Harvest ratio inshore & Migratory fish & \(2.34 \mathrm{E}-05\) & \(1.30 \mathrm{E}-04\) & ns \\
\hline Ecology model fitted & Sinking rate coefficient & Lower layer suspended detritus & -2.29E-05 & 6.12E-05 & ns \\
\hline Fishing fleet model & Processing at sea rate inshore & Demersal fish & \(2.25 \mathrm{E}-05\) & 8.11E-05 & ns \\
\hline Fishing fleet model & Discard rate inshore & Pinnipeds & \(2.25 \mathrm{E}-05\) & 1.26E-04 & ns \\
\hline Physical configuration & Bioturbation depth & Offshore coarse sediments & 2.12E-05 & 8.27E-05 & ns \\
\hline Ecology model fitted & Mineralisation rate sensitivity to grain size & Labile sediment detritus & 2.12E-05 & \(9.89 \mathrm{E}-05\) & ns \\
\hline Ecology model fitted & Maximum uptake rate & Discards by cetaceans & 2.10E-05 & 8.24E-05 & ns \\
\hline Ecology model fitted & Denitrification rate sensitivity to grain size & Sediment porewater nitrate & -2.09E-05 & 4.82E-05 & ns \\
\hline Physical configuration & Bioturbation depth & Inshore sandy sediments & -2.06E-05 & 4.74E-05 & ns \\
\hline Environmental driver & Natural disturbance rate & Inshore coarse sediments & -1.91E-05 & \(2.74 \mathrm{E}-05\) & sig \\
\hline Physical configuration & Bioturbation depth & Offshore sandy sediments & -1.89E-05 & 4.62E-05 & ns \\
\hline Environmental driver & Natural disturbance rate & Inshore muddy sediments & -1.74E-05 & \(5.59 \mathrm{E}-05\) & ns \\
\hline Ecology model fitted & Active migration coefficient & Pinnipeds & -1.61E-05 & 4.91E-05 & ns \\
\hline Fishing fleet model & Discard rate offshore & Pinnipeds & -1.59E-05 & 3.87E-05 & ns \\
\hline Fishing fleet model & Discard rate offshore & Suspension/deposit feeding benthos & -1.47E-05 & 4.46E-05 & ns \\
\hline Ecology model fitted & Nitrification rate sensitivity to grain size & Sediment porewater ammonia & -1.41E-05 & 4.12E-05 & ns \\
\hline Fishing fleet model & Discard rate inshore & Migratory fish & \(1.33 \mathrm{E}-05\) & 4.45E-05 & ns \\
\hline Fishing fleet model & Discard rate inshore & Suspension/deposit feeding benthos & -1.29E-05 & 3.39E-05 & ns \\
\hline Fishing fleet model & Abrasion rate by fishing gears & Inshore rock & -1.29E-05 & 5.84E-05 & ns \\
\hline Physical configuration & Hydraulic conductivity & Reference value for sediment-dependent processes & -1.28E-05 & 4.43E-05 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Birds offshore & -1.20E-05 & 5.31E-05 & ns \\
\hline Ecology model fitted & Mineralisation rate coefficient & Suspended detritus & \(1.20 \mathrm{E}-05\) & 1.35E-04 & ns \\
\hline Ecology model fitted & Maximum uptake rate & Carnivore/scavenge feeding benthos larvae by migratory fish & -1.14E-05 & \(6.94 \mathrm{E}-05\) & ns \\
\hline Ecology model fitted & Nitrification rate coefficient & Upper layer ammonia & -1.12E-05 & \(2.48 \mathrm{E}-05\) & ns \\
\hline Ecology model fitted & Active migration coefficient & Migratory fish & -1.05E-05 & \(1.51 \mathrm{E}-04\) & ns \\
\hline Ecology model fitted & Denitrification rate coefficient & Upper layer nitrate & -9.96E-06 & 3.57E-05 & ns \\
\hline Fishing fleet model & Discard rate inshore & Birds & -8.70E-06 & 4.93E-05 & ns \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Migratory fish inshore & -8.39E-06 & \(4.98 \mathrm{E}-05\) & ns \\
\hline Fishing fleet model & Discard rate offshore & Birds & -7.30E-06 & 5.25E-05 & ns \\
\hline Fishing fleet model & Penetration depth by fishing gears & Inshore sandy sediments & 7.26E-06 & \(1.24 \mathrm{E}-04\) & ns \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Migratory fish offshore & 6.46E-06 & \(5.60 \mathrm{E}-05\) & ns \\
\hline Ecology model fitted & Threshold biomass for zero exploitable stock remaining & Birds inshore & -3.96E-06 & 3.57E-05 & ns \\
\hline Fishing fleet model & Abrasion rate by fishing gears & Inshore muddy sediments & 3.19E-06 & 5.12E-05 & ns \\
\hline Ecology model fixed & Maximum exploitable fraction of stock & Birds & -3.10E-06 & 2.42E-05 & ns \\
\hline Fishing fleet model & Abrasion rate by fishing gears & Inshore coarse sediments & 3.00E-06 & 6.66E-05 & ns \\
\hline Fishing fleet model & Processing at sea rate offshore & Carnivore/scavenge feeding benthos & -2.81E-06 & 5.54E-05 & ns \\
\hline Ecology model fitted & Active migration coefficient & Cetaceans & 2.70E-06 & \(5.34 \mathrm{E}-05\) & ns \\
\hline Ecology model fitted & Maximum uptake rate & Macrophyte debris by carnivorous/scavenge feeding benthos & \(1.61 \mathrm{E}-06\) & 7.35E-05 & ns \\
\hline Physical configuration & Bioturbation depth & Inshore muddy sediments & \(1.40 \mathrm{E}-06\) & \(7.28 \mathrm{E}-05\) & ns \\
\hline Physical configuration & Physical disturbance depth & Inshore coarse sediments & -8.58E-07 & 4.76E-05 & ns \\
\hline Harvest ratio & Harvest ratio inshore & Birds & 3.85E-07 & \(4.78 \mathrm{E}-05\) & ns \\
\hline Environmental driver & Upwelling rate & Offshore zone & NA & NA & NA \\
\hline Environmental driver & Boundary concentration & River detritus & NA & NA & NA \\
\hline Harvest ratio & Harvest ratio inshore & Carnivorous zooplankton & NA & NA & NA \\
\hline Harvest ratio & Harvest ratio inshore & Cetaceans & NA & NA & NA \\
\hline Harvest ratio & Harvest ratio inshore & Macrophytes & NA & NA & NA \\
\hline Harvest ratio & Harvest ratio offshore & Macrophytes & NA & NA & NA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Fishing fleet model & Discard rate inshore & Carnivorous zooplankton & NA & NA & NA \\
\hline Fishing fleet model & Discard rate offshore & Carnivorous zooplankton & NA & NA & NA \\
\hline Fishing fleet model & Discard rate inshore & Cetaceans & NA & NA & NA \\
\hline Fishing fleet model & Discard rate inshore & Macrophytes & NA & NA & NA \\
\hline Fishing fleet model & Discard rate offshore & Macrophytes & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate inshore & Planktivorous fish & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate offshore & Planktivorous fish & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate inshore & Migratory fish & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate offshore & Migratory fish & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate inshore & Suspension/deposit feeding benthos & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate offshore & Suspension/deposit feeding benthos & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate inshore & Carnivorous zooplankton & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate offshore & Carnivorous zooplankton & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate inshore & Birds & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate offshore & Birds & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate inshore & Pinnipeds & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate offshore & Pinnipeds & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate inshore & Cetaceans & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate offshore & Cetaceans & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate inshore & Macrophytes & NA & NA & NA \\
\hline Fishing fleet model & Processing at sea rate offshore & Macrophytes & NA & NA & NA \\
\hline Fishing fleet model & Penetration depth by fishing gears & Inshore rock & NA & NA & NA \\
\hline Fishing fleet model & Penetration depth by fishing gears & Offshore rock & NA & NA & NA \\
\hline Ecology model fitted & Maximum uptake rate & Suspension/deposit feeding benthos by birds & NA & NA & NA \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspension/deposit feeding benthos by birds & NA & NA & NA \\
\hline Ecology model fitted & Maximum uptake rate & Carnivore/scavenge feeding benthos by birds & NA & NA & NA \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivore/scavenge feeding benthos by birds & NA & NA & NA \\
\hline Ecology model fitted & Maximum uptake rate & Carnivorous zooplankton by pinnipeds & NA & NA & NA \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivorous zooplankton by pinnipeds & NA & NA & NA \\
\hline Ecology model fitted & Maximum uptake rate & Suspension/deposit feeding benthos by pinnipeds & NA & NA & NA \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ecology model fitted & Uptake half saturation coefficient & Suspension/deposit feeding benthos by pinnipeds & NA & NA \\
\hline Ecology model fitted & Maximum uptake rate & Carnivore/scavenge feeding benthos by pinnipeds & NA & NA \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivore/scavenge feeding benthos by pinnipeds & NA \\
\hline Ecology model fitted & Maximum uptake rate & Birds by pinnipeds & NA \\
\hline Ecology model fitted & Uptake half saturation coefficient & Birds by pinnipeds & NA \\
\hline Ecology model fitted & Maximum uptake rate & Suspension/deposit feeding benthos by cetaceans & NA & NA & NA & NA \\
\hline Ecology model fitted & Uptake half saturation coefficient & Suspension/deposit feeding benthos by cetaceans & NA & NA & NA \\
\hline Ecology model fitted & Maximum uptake rate & Carnivore/scavenge feeding benthos by cetaceans & NA \\
\hline Ecology model fitted & Uptake half saturation coefficient & Carnivore/scavenge feeding benthos by cetaceans & NA & NA & NA \\
\hline Ecology model fitted & Maximum uptake rate & Birds by cetaceans & NA & NA & NA \\
\hline Ecology model fitted & Uptake half saturation coefficient & Birds by cetaceans & NA & NA \\
\hline Ecology model fitted & \begin{tabular}{l} 
Threshold biomass for zero exploitable \\
stock remaining
\end{tabular} & Carnivorous zooplankton inshore & NA & NA & NA \\
\hline Ecology model fitted & \begin{tabular}{l} 
Threshold biomass for zero exploitable \\
stock remaining
\end{tabular} & Cetaceans inshore & NA & NA \\
\hline Ecology model fitted & \begin{tabular}{l} 
Threshold biomass for zero exploitable \\
stock remaining
\end{tabular} & Macrophytes inshore & NA & NA & NA & NA \\
\hline Ecology model fixed & Maximum exploitable fraction of stock & Macrophytes & NA & NA & NA & NA \\
\hline
\end{tabular}


FIGURE 13 Means (EE_mean) and standard deviations (EE_sd) of the distributions of elementary effects of parameters in the sensitivity analysis of the 1970-1999 North Sea model with respect to the likelihood of the observed target data. Black symbols indicate ecology model parameters which were optimized by simulated annealing; red symbols indicate the fixed parameters which were not optimized; green symbols indicate fishing fleet model parameters; blue symbols indicate harvest ratios; orange symbols indicate environmental and biological event drivers; yellow symbols indicate the physical setup parameters. The wedge formed by the two dashed lines corresponds to \(\pm 2\) standard errors of the mean, so for points falling outside of the wedge there is a significant expectation that the distribution of elementary effects is non-zero. Drawn with the function e2e_plot_sens_mc().

\section*{Performance of the maximum likelihood fitted model}

The data required to derive credible intervals around the maximum likelihood fitted model were generated by 1000 runs of the 1970-1999 model, each of 40 years. The parameters values for each run were drawn from symmetrical random uniform distributions around the maximum likelihood values with a bandwidth of \(\pm 15 \%\).

Annual average biomass density in the model ( \(\mathrm{mMN} . \mathrm{m}^{-2}\) ) varied by around 5 orders of magnitude across the guilds. Biomass density was higher in the offshore zone than the inshore for all guilds. In general, the uncertainty in annual average biomass increased with the trophic level of guilds (Figure 14).


FIGURE 14 Credible intervals of the annual averaged values of living state variables in the model. X-axis shows \(\log _{10}\) values of the average biomass density ( \(\mathrm{mMN} \mathrm{m}^{-2}\) ) over a stationary annual cycle for the 1970-1999 fitted model. Blue box-and-whisker plots refer to the inshore/shallow zone, red to the offshore/deep zone. Whiskers span the \(99 \%\) likelihood interval, boxes span \(50 \%\), and the central tick-mark indicates the median value. Drawn with the function e2e_plot_biomass().

Stationary annual cycles of the each of the model state variables and their credible intervals, with the maximum likelihood fitted parameter set, fixed parameters, and driving data corresponding to the 1970-1999 period, are shown in Figures 15-22.

The annual cycles of the fish and the birds \& mammals guilds in the model show the effects of the dynamic, food-motivated active migrations (Figure 23). The primary driver for the feeding migrations is the timing of seasonal peaks of omnivorous and carnivorous zooplankton concentrations, which higher in the inshore zone than offshore during summer, and conversely higher offshore in winter. These gradients drive an inshore movement of fish in the spring and an offshore movement in winter. This in turn drives an inshore spring immigration of especially birds, and offshore winter movement.

For some of the nutrient and plankton variables in the model we have corresponding monthly averaged observational data from various sources, aggregated up to the scale of the whole model domain (i.e. combining both the inshore and offshore sub-domains). Comparison of the observed and modelled monthly averaged data is shown in Figure 24. This represents an independent qualitative test of the model performance. The results show some under-prediction of the biomass of omnivorous zooplankton and meroplankton (larvae of benthic taxa). However the overall agreement is good, particularly with respect to the timing of peaks in abundance.

Data generated by the NetIndices package showed that the certainty of mean trophic level of the living state variables in the whole domain was relatively high (i.e. narrow credible intervals), except for the birds guild. However, the omnivory index was more uncertain for all guilds especially the birds (Figure 25).




\(\begin{array}{llll}0 & 120 & 240 & 360\end{array}\)



\(\begin{array}{llll}0 & 120 & 240 & 360\end{array}\)

\(\begin{array}{llll}0 & 120 & 240 & 360\end{array}\)


FIGURE 15 Stationary annual cycles of water column suspended detritus (implicitly including bacteria), dissolved nutrients, and phytoplankton for the 1970-1999 fitted model. Dashed lines span the \(99 \%\) likelihood interval of model outputs given the observed indices of the state of the North Sea during this period. Grey shading spans the \(50 \%\) likelihood interval. Solid black line is the median of the likelihood distribution and the red line is the maximum likelihood model. In this case the grey shading and black and ted lines are almost coincident for all variables. Columns of panels are different variables output from the model, rows are different spatial compartments. Units for all variables: \(\mathrm{mMN} \mathrm{m}^{-3}\).


FIGURE 16 Stationary annual cycles of sediment detritus (implicitly including bacteria) and porewater nutrients for the 1970-1999 fitted model. Dashed lines span the \(99 \%\) likelihood interval of model outputs given the observed indices of the state of the North Sea during this period. Grey shading spans the \(50 \%\) likelihood interval. Solid black line is the median of the likelihood distribution and the red line is the maximum likelihood model. In this case the grey shading and black and ted lines are almost coincident for all variables. Columns of panels are different variables output from the model, rows are different spatial compartments. Units: detritus \(\% \mathrm{~N}\) by weight, dissolved nutrients \(\mathrm{mMN} \mathrm{m}^{-3}\).


FIGURE 17 Stationary annual cycles of zooplankton guilds for the 1970-1999 fitted model. Dashed lines span the \(99 \%\) likelihood interval of model outputs given the observed indices of the state of the North Sea during this period. Grey shading spans the \(50 \%\) likelihood interval. Solid black line is the median of the likelihood distribution and the red line is the maximum likelihood model. Columns of panels are different variables output from the model, rows are different spatial compartments. Units for all variables: \(\mathrm{mMN} \mathrm{m}^{-2}\).


FIGURE 18 Stationary annual cycles of benthos guilds and their larval stages for the 1970-1999 fitted model. Dashed lines span the 99\% likelihood interval of model outputs given the observed indices of the state of the North Sea during this period. Grey shading spans the \(50 \%\) likelihood interval. Solid black line is the median of the likelihood distribution and the red line is the maximum likelihood model. Columns of panels are different variables output from the model, rows are different spatial compartments. Units for all variables: \(\mathrm{mMN} \mathrm{m}{ }^{-2}\).


FIGURE 19 Stationary annual cycles of planktivorous and demersal fish guilds and their larval stages for the 1970-1999 fitted model. Dashed lines span the \(99 \%\) likelihood interval of model outputs given the observed indices of the state of the North Sea during this period. Grey shading spans the \(50 \%\) likelihood interval. Solid black line is the median of the likelihood distribution and the red line is the maximum likelihood model. Columns of panels are different variables output from the model, rows are different spatial compartments. Units for all variables: \(\mathrm{mMN} \mathrm{m}^{-2}\).


FIGURE 20 Stationary annual cycles of the birds \& mammals guilds, migratory fish, and dead corpses for the 1970-1999 fitted model. Dashed lines span the \(99 \%\) likelihood interval of model outputs given the observed indices of the state of the North Sea during this period. Grey shading spans the \(50 \%\) likelihood interval. Solid black line is the median of the likelihood distribution and the red line is the maximum likelihood model. Columns of panels are different variables output from the model, rows are different spatial compartments. Units for all variables: \(\mathrm{mMN} \mathrm{m}^{-2}\).


FIGURE 21 Stationary annual cycles of seabed corpses and fishery discards for the 1970-1999 fitted model. Dashed lines span the 99\% likelihood interval of model outputs given the observed indices of the state of the North Sea during this period. Grey shading spans the 50\% likelihood interval. Solid black line is the median of the likelihood distribution and the red line is the maximum likelihood model. Columns of panels are different variables output from the model, rows are different spatial compartments. Units for all variables: \(\mathrm{mMN} \mathrm{m}{ }^{-2}\).


FIGURE 22 Stationary annual cycles of macrophytes and macrophyte debris in the inshore zone for the 1970-1999 fitted model. Dashed lines span the \(99 \%\) likelihood interval of model outputs given the observed indices of the state of the North Sea during this period. Grey shading spans the \(50 \%\) likelihood interval. Solid black line is the median of the likelihood distribution and the red line is the maximum likelihood model. Macrophytes are absent from the offshore zone. Units for all variables: \(\mathrm{mMN} \mathrm{m}^{-2}\).


FIGURE 23 Stationary annual cycles of net active migration fluxes ( \(\mathrm{mMN} . \mathrm{m}^{-2} . \mathrm{d}^{-1}\) ) of biomass between the offshore and inshore zones for the 1970-1999 fitted model. Positive values indicate net flux from offshore to inshore, and vice-versa for negative values. Dashed lines span the \(99 \%\) likelihood interval of model outputs given the observed indices of the state of the North Sea during this period. Grey shading spans the \(50 \%\) likelihood interval. Solid black line is the median of the likelihood distribution and the red line is the maximum likelihood model.


FIGURE 24 Monthly averages of the 1970-1999 stationary annual cycle daily resolution output for the whole model domain (red) and observed monthly averaged data from the North Sea (black). Box and whiskers for the model data show the 0.5, 25, 50, 75 and 99.5 centiles of the likelihood distribution of results given the uncertainty in fitted parameter values. For the observed data the box and whiskers show the equivalent variability in measurements form the North Sea aggregated over the period 1970-1999. Note that the model was not fitted to these observed data so the comparison represents a validation of the fitted model.


FIGURE 25 Credible intervals of the annual mean trophic level (upper panel) and omnivory index (lower panel) for the stationary 1970-1999 model. Black boxes span \(50 \%\) of the likelihood interval, whiskers span \(99 \%\), thick black bar represents the median likelihood. The red bar in each case indicates the maximum likelihood model. Guilds (rows) in each panel are ranked by the mean trophic level in the maximum likelihood model.

\section*{Annual integrated mass fluxes in the maximum likelihood fitted model}

At stationary state, 1970-1999 fishery landings represented 0.3-0.4\% of annual gross primary production (GPP); sediment burial fluxes 15 \(17 \%\) of GPP, and denitrification was \(130 \%\) of the combined atmospheric and riverine dissolved nutrient input (Figure 26). Overall, the model was a net importer of nitrogen from across the ocean boundaries, with exports due to advection and migrations equivalent to \(91 \%\) of imports. A detailed breakdown of the mass balance fluxes is provided in Tables 40 and 41.

Burial of organic nitrogen in the seabed sediments emerges as a significant export flux from the model ( \(17 \%\) of gross primary production in the inshore zone, \(15 \%\) offshore) although the confidence intervals are wide (Tables 40 and 41 ). It is not at all clear whether this is a realistic figure or not. There seem to be few if any empirical estimates of nitrogen burial. Empirical estimates of carbon burial in the North Sea are also scarce and highly variable (de Haas et al., 2002), but given the model assumption of constant Redfield stoichiometry (which may be particularly suspect in the context of sediment geochemistry) a \(10 \%\) burial flux seems feasible though on the high-side of empirical evidence. Hence, the realism of the simulated burial fluxes remains an unresolved issue.

Offshore zone


FIGURE 26 Stationary state nitrogen mass fluxes for the 1970-1999 model. Flux units: mMN. \({ }^{-1}\) scaled to a model domain sea surface area of \(1 \mathrm{~m}^{2}\). Red arrows: fluxes defined by external driving data; blue arrows: modelled fluxes included in the target data set for fitting the model; black arrows: modelled fluxes not in the target data set. GPP indicates gross annual primary production - in the inshore zone this includes macrophytes.

TABLE 40 Stationary annual mass fluxes of nitrogen ( \(\mathrm{mMN} . \mathrm{y}^{-1}\) ) into and out of the offshore zone of the 1970-1999 model domain (surface area \(0.735 \mathrm{~m}^{2}\) ). Figures in brackets are \(99 \%\) credible intervals. DIN refers to dissolved inorganic nitrogen (nitrate + ammonia). In this case the fisheries landings are the processed weigh, not the live weight landed.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & Inputs & \multicolumn{3}{|l|}{Outputs} \\
\hline & & Transport \& migration & Transport \& migration & Geochemistry & Fisheries \\
\hline \multirow[t]{3}{*}{Ocean boundary} & DIN & 3635.2 & 3350.0 (3220.9-3623.3) & & \\
\hline & Plankton \& detritus & 378.0 & 347.9 (223.7-504.3) & & \\
\hline & Active migrations & 5.1 & 4.1 (3.9-4.3) & & \\
\hline \multirow[t]{3}{*}{Inshore/offshore boundary (gross flux)} & DIN & 356.0 (323.9-403.6) & 267.7 (247.8-292.8) & & \\
\hline & Plankton \& detritus & 72.6 (51.4-104.7) & 72.3 (52.9-92.8) & & \\
\hline & Active migrations & 0.51 (0.15-1.64) & 0.35 (0.10-1.07) & & \\
\hline \multirow[t]{5}{*}{Land and atmosphere} & Atmospheric DIN deposition & 36.9 & & & \\
\hline & River DIN discharges & 0 & & & \\
\hline & Water column denitrification & & & 0.04 (0.04-0.05) & \\
\hline & Sediment denitrification & & & 138.5 (117.1-164.3) & \\
\hline & Macrophyte beach-cast & & 0 & & \\
\hline Seabed sediments & Net burial & & & 251.9 (128.8-335.7) & \\
\hline \multirow[t]{7}{*}{Human extraction} & Planktivous fish landings & & & & 4.84 (1.91-7.88) \\
\hline & Demersal fish landings & & & & 1.16 (0.02-2.00) \\
\hline & Migratory fish landings & & & & 0.77 (0.67-0.86) \\
\hline & Susp/deposit benthos landings & & & & 0.060 (0.032-0.088) \\
\hline & Carn/scav benthos landings & & & & 0.037 (0.008-0.082) \\
\hline & Pelagic invert. Landings & & & & 0.003 (<0.001-0.017) \\
\hline & Cetacean landings & & & & 4.04E-05 (0-14.6E-05) \\
\hline TOTAL & & 4484.3 & 4086.9 & 390.5 & 6.87 \\
\hline TOTAL GAS & & & & 138.6 & \\
\hline TOTAL DIN IN/OUT & & 4028.1 & 3662.2 & & \\
\hline TOTAL PON IN/OUT & & 456.2 & 424.7 & 251.9 & 6.87 \\
\hline Phytoplankton gross production & & 1669.9.0 (1143.4-2167.1) & & & \\
\hline
\end{tabular}

TABLE 41 Stationary annual mass fluxes of nitrogen (mMN. \(\mathrm{y}^{-1}\) ) into and out of the inshore zone of the 1970-1999 model domain (surface area \(0.265 \mathrm{~m}^{2}\) ). Figures in brackets are \(99 \%\) credible intervals. DIN refers to dissolved inorganic nitrogen (nitrate + ammonia). In this case the fisheries landings are the processed weigh, not the live weight landed.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Inputs \\
Transport \& migration
\end{tabular}} & \multicolumn{3}{|c|}{Outputs} \\
\hline & & & Transport \& migration & Geochemistry & Fisheries \\
\hline \multirow[t]{3}{*}{Ocean boundary} & DIN & 147.2 & 89.7 (90.3-106.4) & & \\
\hline & Plankton \& detritus & 71.7 & 9.5 (5.7-14.9) & & \\
\hline & Active migrations & 0 & 0 & & \\
\hline \multirow[t]{3}{*}{Inshore/offshore boundary (gross flux)} & DIN & 267.2 (242.1-294.5) & 356.0 (323.9-403.6) & & \\
\hline & Plankton \& detritus & 72.3 (52.9-92.8) & 72.6 (51.4-101.7) & & \\
\hline & Active migrations & 0.35 (0.10-1.07) & 0.51 (0.15-1.64) & & \\
\hline \multirow[t]{5}{*}{Land and atmosphere} & Atmospheric DIN deposition & 18.2 & & & \\
\hline & River DIN discharges & 107.5 & & & \\
\hline & Water column denitrification & & & 0.005 (0.004-0.007) & \\
\hline & Sediment denitrification & & & 70.3 (53.9-93.9) & \\
\hline & Macrophyte beach-cast & & 1.59 (1.05-2.14) & & \\
\hline Seabed sediments & Net burial & & & 77.6 (33.9-105.0) & \\
\hline \multirow[t]{7}{*}{Human extraction} & Planktivous fish landings & & & & 0.80 (0.31-1.33) \\
\hline & Demersal fish landings & & & & 0.52 (0.01-0.95) \\
\hline & Migratory fish landings & & & & 0.009 (0.007-0.011) \\
\hline & Susp/deposit benthos landings & & & & 0.034 (0.023-0.047) \\
\hline & Carn/scav benthos landings & & & & 0.018 (0-0.076) \\
\hline & Pelagic invert. Landings & & & & 0 (0.0-5.7E-5) \\
\hline & Cetacean landings & & & & 0.0 \\
\hline TOTAL & & 684.5 & 536.1 & 147.9 & 1.39 \\
\hline TOTAL GAS & & & & 70.5 & \\
\hline TOTAL DIN IN/OUT & & 540.1 & 451.9 & & \\
\hline TOTAL PON IN/OUT & & 144.4 & 84.2 & 77.6 & 1.39 \\
\hline Phytoplankton gross production & & 439.7 (320.6-532.0) & & & \\
\hline Macrophyte gross production & & 18.6 (14.3-23.3) & & & \\
\hline
\end{tabular}

\section*{Disaggregation of catch into landings and discards by each fishing gear}

The raw output from the ecology model includes the total landings and discards of each guild from the inshore and offshore zones by the combined actions of all the fishing gears. Output from the fleet model is then used to disaggregate the annual integrated landings and discards between the gears (see model documentation). These results are illustrated in Figure 27 for a stationary year of the 1970-1999 model.


FIGURE 27 Distribution of 1970-1999 fishery catch across gears for each resource guild in the ecology model. Black and green bars represent discards and landings respectively from the offshore zone of the model. Grey and blue represent discards and landings from the inshore zone. The different fishing gear fleets are indicated along the \(x\)-axis by the codes: PT = Pelagic trawls and seines; SST = sandeel/sprat trawls; LLm = long-line for mackerel; BTf = fish beam trawl; DS = demersal seine; OT = demersal otter trawl; LLd = demersal long-lines and gill net; BTs = shrimp beam trawl; NT = Nephrops trawl; CR = creels; MD = mollusc dredges; Wh = Norwegian whaler.

\section*{Sensitivity to variations in pelagic and demersal harvesting at the scale of the whole model domain.}

Sensitivity of the stationary state of the 1979-1999 model to bi-variate changes in pelagic and demersal fishfish harvest ratios was carried out by replicating the approach taken by Heath (2012). The model was run to a stationary state for each of 49 combinations of pelagic and demersal fish harvest ratios, forming a \(7 \times 7\) matrix of values, with each harvest rate varying between 0 and 3 -times the baseline 1970-1999 rate, in intervals of 0.5 . Hence, the baseline model was represented by matrix cell coordinates 3,3 (pelagic and demersal harvest ratios 1.0 and 1.0 -times the baseline respectively). The term 'pelagic' harvest ratio here refers to the harvest ratios of both planktivorous and migratory fish which were varied in synchrony.

Practically, the structured variations in harvest ratio were achieved by alterations to the harvest ratio multiplier values for the planktivorous, migratory and demersal fish guilds in the parameter file 'harvest_ratio_multiplier.csv'. This means that while the harvest ratios were varied, the activity rates of the fishing gears were not. So, other consequences of fishing such as seabed abrasion rates and harvest ratios on other resources guilds were unaffected. Essentially, the variations in pelagic and demersal harvesting were implicitly achieved by systematic changes in the selectivity patterns and catching power of each gear. Discard and processing at sea rates from all guilds except demersal fish were constant across all the model runs. In the case of demersal fish, discard rates were set to vary according the in-built density dependent relationship with demersal fish biomass within the model.

At the end of each run, the annual averaged biomasses of model components were calculated for the final year of the simulation, together with annual integrals of production rates, dietary fluxes, landings and discards. In addition, a range of network information indices were derived from the annual integrated flow matrix for the final year, using the R package NetIndices (Soetaert \& Kones 2014).

On conclusion of all 49 model runs, the data on each individual model output (e.g. planktivorous fish landings) was assembled across all runs into a \(7 \times 7\) matrix and visualised as contoured and colour-shaded maps (Figures 28-33)

The maps of planktivorous and demersal fish landings (Figure 28) both show a characteristic ridge of peak values running through the twodimension parameter space defining pelagic and demersal harvest ratios. The 'height' of the crest of each ridge represents the maximum sustainable yield (MSY; in terms of landings) for each resource guild, which is a key criterion in fisheries management. The combination of harvest ratios defining the trajectory of MSY through the harvest ratio space ( \(\mathrm{HR}_{\text {MSY }}\) ) represents the fishing conditions which deliver MSY equivalent to the term \(\mathrm{F}_{\text {MSY }}\) in the fisheries management context. These results are some of the most important outputs from the model - they show that MSY and \(\mathrm{HR}_{\text {MSY }}\) for planktivorous and demersal fish are inter-independent. This interaction between the two fishing sectors arises as a result of the direct predator-prey relationship between the two guilds (demersal fish eat planktivorous fish and larvae; planktivorous fish each demersal fish larvae), and also from indirect food web interactions via zooplankton and the predators on the fish guilds. The magnitude of MSY for planktivorous fish is highly sensitive to the demersal fish harvest rate (i.e. planktivorous MSY is strongly depressed at low demersal harvest ratio (high demersal fish biomass), and conversely high at high demersal harvest ratio (low demersal biomass). On the other hand, demersal fish MSY is relatively insensitive to pelagic harvesting. The clear implication is that demersal fish exert a strong top-down effect on
planktivorous fish productivity, but planktivorous fish have only a weak bottom-up effect on demersal fish. These are key elements of guidance for the strategic management of fisheries.

For the demersal fish guild, the pattern of discard quantity across the pelagic and demersal harvest ratio space is not exactly proportional to the pattern of landings, because of the effects of the density-dependent discard rate which was implemented in the simulations. Demersal fish discard rate is indirectly related to demersal fish biomass in the model, mimicking the empirically observed response of average fish size to variations in stock biomass.

The landings map for migratory fish does not show the same distribution with respect to harvest ratios as the planktivorous fish despite the ratios for the two guilds being varied in concert, because the biomass of migratory fish in the system is sustained by external immigration. In the model, the immigration rate is independent of the intensity of harvesting within the model domain - the assumption is that harvesting within the North Sea is a minor component of the overall harvesting rate of the whole northeast Atlantic stock. Parameterising a feedback between the local harvest rate within the model domain and the magnitude of the external ocean stock of migratory fish, and potentially its migration pattern (i.e. the proportion entering the model each year) is a topic for future development.

The top-down effects of harvesting on the model food web are clearly visible in the maps of annual averaged masses of zooplankton, benthos, phytoplankton and nutrient within the two-dimensional harvest ratio space. Similarly, the bottom-up effects of harvesting on the annual average biomass of birds, pinnipeds and cetaceans (Figure 29). The response patterns are complex, but a clear feature is that the top-down effects generate only small variations in nutrient and plankton generate across the harvest-ratio space, whereas the bottom-up effects generate large variations on the top-predators with near-extinction in some parts of the space. Similarly, the top-down effects of harvesting caused only small variability in annual mean trophic level and omnivory indices of the zooplankton and benthos guilds, but the bottom-up effects on top-predator groups were considerably larger (Figure 34). The variations in omnivory indices were reflected in the emergent diet compositions of the toppredator groups which were mainly linked to the availability of planktivorous fish which are the main preferred food type of birds, pinnipeds and cetaceans (Figure 32).

The maps of network indices generated by the model simulations show clear patterns, but have not yet been subject to serious consideration (Figure 33). They are included here to illustrate the responses generated by the model. Possibly of significance are the maps of system ascendency, and the ratio of ascendency:capacity (AC ratio). Ascendency is a measure of the degree of organisation of the network, or the extent to which the capacity is being utilised. The AC ratio has been proposed as a useful index of the 'maturity' of a network (Allesina \& Ulanowicz, 2004). In these simulations, the AC ratio is clearly correlated with top-down driven variations in primary production, whilst the distribution of ascendency appears to be loosely correlated with distribution of planktivorous fish landings.


FIGURE 28 Variations in stationary annual mean biomass ( \(\mathrm{mMN} \cdot \mathrm{m}^{-2}\) ), annual integrated landings ( \(\mathrm{mMN} \cdot \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) ), and annual integrated discards (mMN. \(\mathrm{m}^{-2} . \mathrm{y}^{-1}\) ) for each guild of the three finfish in the 1970-1999 model, in relation to pelagic and demersal harvest ratios. The x and \(y\)-axis scales show the multipliers applied to the baseline 1970-1999 harvest ratios, so coordinates 1,1 (indicated by the thin dashed 'crosswires') correspond to the baseline model. Harvest ratios for migratory and planktivorous fish were varied in simultaneously. The heavy black dashed line in the landings panel for planktivorous fish and demersal indicates the trajectory of harvest ratios generating maximum sustainable landings.


FIGURE 29 Variations in stationary annual mean biomass ( \(\mathrm{mMN} . \mathrm{m}^{-2}\) ) of each living guild other than finfish in the 1970-1999 model, in relation to pelagic and demersal harvest ratios. The x and y -axis scales show the multipliers applied to the baseline 1970-1999 harvest ratios, so coordinates 1,1 (indicated by the thin dashed 'cross-wires') correspond to the baseline model. Harvest ratios for migratory and planktivorous fish were varied in simultaneously.


FIGURE 30 Variations in annual integrated primary production and denitrification fluxes ( \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) ), in the 1970-1999 model, in relation to pelagic and demersal harvest ratios. The \(x\) and \(y\)-axis scales show the multipliers applied to the baseline 1970-1999 harvest ratios, so coordinates 1,1 (indicated by the thin dashed 'cross-wires') correspond to the baseline model. Harvest ratios for migratory and planktivorous fish were varied in simultaneously. Net primary production is the net of gross production (annual integrated nutrient assimilation) and annual integrated non-grazing mortality an metabolic losses. Two versions of new primary production are shown (traditional: annual integrated nitrate assimilation, and H\&B: annual draw-down of depth-integrated nitrate between winter and summer (Heath and Beare 2008)). The f-ratio is the ratio of new production to gross primary production.


FIGURE 31 Variations in annual integrated food consumption and diet composition for each of the three finfish guilds in the 1970-1999 model, in relation to pelagic and demersal harvest ratios. The \(x\) and \(y\)-axis scales show the multipliers applied to the baseline 1970-1999 harvest ratios, so coordinates 1,1 (indicated by the thin dashed 'cross-wires') correspond to the baseline model. Harvest ratios for migratory and planktivorous fish were varied simultaneously. Left-hand column; food consumption ( \(\mathrm{mMN} . \mathrm{m}^{-2} \cdot \mathrm{y}^{-1}\) ), Second column: proportion of annual integrated food consumption made up of fish (piscivory). Third column: proportion of annual integrated food consumption made up of benthos or zooplankton (benthivory or planktivory). Final column (demersal fish only): proportion of annual integrated food consumption made up of corpses and discards (scavenging).


FIGURE 32 Variations in annual integrated food consumption and diet composition for each of the three top-predator guilds in the 1970-1999 model, in relation to pelagic and demersal harvest ratios. The x and y -axis scales show the multipliers applied to the baseline 1970-1999 harvest ratios, so coordinates 1,1 (indicated by the thin dashed 'cross-wires') correspond to the baseline model. Harvest ratios for migratory and planktivorous fish were varied in simultaneously. Left-hand column; food consumption ( \(\mathrm{mMN} . \mathrm{m}^{-2} . \mathrm{y}^{-1}\) ), Second column: proportion of annual integrated food consumption made up of fish (piscivory). Third column: proportion of annual integrated food consumption made up of corpses and discards (scavenging). White areas indicate harvest ratio combinations where the diet proportion was undefined due the consumer mass being extremely small or zero.


FIGURE 33 Variations in annual network information indices generated by the NetIndices package for the 1970-1999 model, in relation to pelagic and demersal harvest ratios. The \(x\) and \(y\)-axis scales show the multipliers applied to the baseline 1970-1999 harvest ratios, so coordinates 1,1 (indicated by the thin dashed 'cross-wires') correspond to the baseline model. Harvest ratios for migratory and planktivorous fish were varied in simultaneously.


FIGURE 34 Variations in the stationary state annual mean trophic level (upper panel) and omnivory index (lower panel) of the living guilds within the bi-dimensional space of pelagic and demersal harvest ratio for the 1970-1999 model. Each harvest ratio was varied by factors of 0 to 3 -times the 1970-1999 baseline value in intervals of 0.5 -times. Black boxes span \(50 \%\) of the distribution of values, whiskers the span full range, thick black bar represents the median value. The red bar in each case indicates the 1970-1999 baseline model. Guilds (rows) in each panel are ranked by the mean trophic level in the baseline model.

\section*{Acknowledgements}

The main financial support for the development of the North Sea implementation of StrathE2E2 came from the NERC Marine Ecosystems Research Programme (NE/L003120/1). Additional support was from the EU-Horizon 2020 DISCARDLESS project and Fisheries Innovation Scotland project FIS003. We are grateful to Yuri Artioli of the Plymouth Marine Laboratory for making outputs from the NEMO-ERSEM model available to us, from which we extracted driving data for StrathE2E.

\section*{References}

Abdullah, M.I. \& Fredriksen, S. (2004). Production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborea along the west coast of Norway. Journal of the Marine Biological Association of the UK, 84, 887-894

Allesina, S. \& Ulanowicz, R.E. (2004). Cycling in ecological networks: Finn's index revisited. Computational Biology and Chemistry, 28, 227233.

Anderson, O.R.J., Small, C.J., Croxall, J.P., Dunn, E.K., Sullivan, B.J., Yates, O. and Black, A. (2011). Global seabird bycatch in longline fisheries. Endangered Species Research, 14, 91-106.

Bjørge, A., Brownell, R.L.J., Donovan, G.P. \& Perrin, W.F. (1994). Significant direct and incidental catches of small cetaceans. Reports of the international Whaling Commission (special issue),15, 75-130.

Bjørge, A., Skern-Mauritzen, M. \& Rossman, M.C. (2013). Estimated bycatch of harbour porpoise (Phocoena phocoena ) in two coastal gillnet fisheries in Norway, 2006-2008. Mitigation and implications for conservation. Biological Conservation, 161, 164-173.

Black, W.A.P. (1950). The seasonal variation in weight and chemical composition o fthe common British Laminariaceae. Journal of the Marine Biological Association of the United Kingdom, 29, 45-72.

Brady-Campbell, M.M., Campbell, D.B. \& Harlin, M.H. (1984). Productivity of kelp (Laminaria spp.) near the southern limit in the Northwestern Atlantic Ocean. Marine Ecology Progress Series, 18, 79-88

Brion, N., Baeyens, W., de Galani, S., Elskens, M. \& Laane, R.W.P.M. (2004). The North Sea: source or sink for nitrogen and phosphorus to the Atlantic Ocean? Biogeochemistry, 68, 277-296.

Broch, O.J. \& Slagstad, D. (2012). Modelling seasonal growth and composition of the kelp Saccharina latissimi. Journal of. Applied Phycology, 24, 759-776.

Brown, S.L., Reid, D. \& Rogan, E. (2013). A risk-based approach to rapidly screen vulnerability of cetaceans to impacts from fisheries bycatch. Biological Conservation, 168, 78-87.

Bryant, A.D. \& Doyle, P. (1992). Static predation loading estimation for North Sea top predators. ERSEM Progress Report January 1992,
Annex 6: 1-16 (EU MAST I project CT90-0021)
Burrows M.T., Fox, C.J., Moore, P., Smale, D., Sotheran, I., Benson, A., Greenhill, L., Martino, S., Parker, A., Thompson, E. \& Allen, C.J. (2018). Wild Seaweed Harvesting as a Diversification Opportunity for Fishermen. A report by Scottish Association for Marine Science Research Services Limited for Highlands and Islands Enterprise, pp. 171.

Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y., Blackford, J., Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S., Lessin, G., van Leeuwen, S., van der Molen, J., de Mora, L., Polimene, L., Sailley, S., Stephens, N. \& Torres, R. (2016). ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels, Geoscientific Model Development, 9, 1293-1339.

Ciavatta, S., Brewin, R. J. W., Skákala, J., Polimene, L., de Mora, L., Artioli, Y., \& Allen, J. I. (2018). Assimilation of ocean-color plankton functional types to improve marine ecosystem simulations. Journal of Geophysical Research: Oceans, 123, 834-854.

Clarke, E. D., Speirs, D. C., Heath, M. R., Wood, S. N., Gurney, W. S. C., \& Holmes, S. J. (2006). Calibrating remotely sensed chlorophyll-a data by using penalized regression splines. Journal of the Royal Statistical Society: Series C (Applied Statistics), 55, \(331-353\).

Cosgrove, R., Gosch, M., Reid, D., Sheridan, M., Chopin, N., Jessopp, M. \& Cronin, M. (2016). Seal bycatch in gillnet and entangling net fisheries in Irish waters. Fisheries Research, 183, 192-199.

Coull, K.A., Jermyn, A.S., Newton, A.W., Henderson, G.I. \& Hall, W.B. (1989). Length weight relationships for 88 species of fish encountered in the North East Atlantic. Scottish Fisheries Research Report Number, 43, 82 pp.

Dawson, S.M., Northridge, S., Waples, D. \& Read, A.J. (2013). To ping or not to ping: the use of active acoustic devices in mitigating interactions between small cetaceans and gillnet fisheries. Endangered Species Research, 19, 201-221.

De Dominicis, M., O’Hara Murray, R. \& Wolf, J. (2017). Multi-scale ocean response to a large tidal stream turbine array. Renewable Energy, 114 (part B), 1160-1179.
de Haas, H., van Weering, T.C.E. \& de Stigter, H. (2002). Organic carbon in shelf seas: sinks or sources, processes and products. Continental Shelf Research, 22, 691-717.

Deaville, R. \& Jepson, P.D. (2011). UK Cetacean strandings investigation programme final report for the period 1st January 2005-31st December 2010.
http://randd.defra.gov.uk/Document.aspx?Document=FinalCSIPReport2005-2010 finalversion061211released[1].pdf, 98pp.
Dee, D.P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S, Andrae, U , Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. \& Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137, 553-597.

Devlin, M. J., Barry, J., Mills, D. K., Gowen, R.J., Foden, J., Sivyer, D. \& Tett, P. (2008). Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuarine, Coastal and Shelf Science, 79, 429-439.

Eigaard, O. R., Bastardie, F., Breen, M., Dinesen, G. E., Hintzen, N. T., Laffargue, P., Mortensen, L. O., Nielsen, J. R., Nilsson, Hans C., O'Neill, F. G., Polet, H., Reid, David G., Sala, A., Sköld, M., Smith, C., Sørensen, T. K., Tully, O., Zengin, M. \& Rijnsdorp, A. D. (2015). Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES Journal of Marine Science, 73, i27-i43.

Eleftheriou, A. \& Basford, D.J. (1989). The microbenthic infauna of the offshore northern North Sea. Journal of the Marine Biological Association of the UK, 69, 123-143.

Engelhard, G.H. (2008). One hundred and twenty years of change in fishing power of English North Sea trawlers, pp 1:25 in Payne, A.I.L., Cotter, J and Potter, T.(eds), Advances in Fisheries Science: 50 Years on From Beverton and Holt. Wiley-Blackwell, Oxford 568 pp

Evans, P.G.H. \& Hintner, K. (2013). A Review of the direct and indirect impacts of fishing activities on marine mammals in Welsh waters. CCW Policy Research Report, 12/5. 163pp.

Fraser, H. M., Greenstreet, S. P. R. \& Piet, G. J. (2007). Taking account of catchability in groundfish survey trawls: implications for estimating demersal fish biomass. ICES Journal of Marine Science, 64, 1800-1819.

Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.K., Zweng, M.M., Reagan, J.R. \& Johnson, D.R. (2014). World Ocean Atlas 2013, Volume 4: Dissolved inorganic nutrients (phosphate, nitrate, silicate). S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS, 76, 25 pp .

Genovart, M., Doak, D.F., Igual, J.-M., Sponza, S., Kralj, J. \& Oro, D. (2017). Varying demographic impacts of different fisheries on three Mediterranean seabird species. Global Change Biology, 23, 3012-3029.

Gohin, F. (2011). Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters, Ocean Science, 7, 705-732.

Greenstreet, S. P. R. (1996). Estimation of the daily consumption of food by fish in the North Sea in each quarter of the year. Scottish Fisheries Research Report, 55. 89 pp. The Scottish Office Agriculture, Environment and Fisheries Department.

Greenstreet, S., Robinson, L., Reiss. H., Craeymeersch, J., Callaway, R., Goffin, A., Jorgensen, L., Robertson, M., Kröncke, I., deBoois, I., Jacob, N., \& Lancaster, L. (2007). Species composition, diversity, biomass and production of the benthis invertebrate community of the North Sea. Fisheries Research Services Collaborative Report, 10/07, 74pp.

Greenstreet, S. P. R., Rogers, S. I., Rice, J. C., Piet, G. J. \& Guirey, E. J. (2011). Development of the EcoQO for the North Sea fish community. ICES Journal of Marine Science, 68, 1-11.

Hammond, P.S., Berggren, P., Benke, H., Borchers, D.L., Collet, A., Heide-Jørgensen, M.P., Heimlich, S., Hiby, A.R., Leopold, M.F. \& Øien, N. (2002). Abundance of harbour porpoise and other cetaceans in the North Sea and adjacent waters. Journal of Applied Ecology, 39, 361-376.

Heath, M.R. (2005). Changes in the structure and function of the North Sea fish food web, 1973-2000, and the impacts of fishing and climate. ICES Journal of Marine Science, 62, 847-868.

Heath, M.R. (2007a). Spatially resolved monthly riverine fluxes of oxidised nitrogen (nitrate and nitrite) to the European shelf seas, 1960-2005. Fisheries Research Services Internal Report, 02/07, 59p www.scotland.gov.uk/Uploads/Documents/0207.pdf

Heath, M.R. (2007b). The consumption of zooplankton by fish early life history stages in the North Sea. ICES Journal of Marine Science, 64, 1650-1663.

Heath, M.R. (2012). Ecosystem limits to food web fluxes and fisheries yields in the North Sea simulated with an end-to-end food web model. Progress in Oceanography (Special issue: End-to-end modelling: Towards Comparative Analysis of Marine Ecosystem Organisation), 102, 4266.

Heath, M.R. \& Beare, D.J. (2008). New primary production in northwest European shelf seas, 1960-2003. Marine Ecology Progress Series, 363, 183-203

Heath, M.R. \& Cook, R.M. (2015). Hindcasting the quantity and composition of discards by demersal fisheries in the North Sea. PLoS One DOI:10.1371/journal.pone. 0117078

Heath, M., Wilson, R., Speirs, D. (2015). Modelling the whole-ecosystem impacts of trawling. A study commissioned by Fisheries Innovation Scotland (FIS) http://www.fiscot.org/ 86pp.

Heip, C., Basford, D., Craeymeersch, J.A., Dewarumez, J.-M., Dörjes, J., de Wilde, P., Duineveld, G., Eleftheriou, A., Herman, P. M. J., Niermann, U., Kingston, P., Künitzer, A., Rachor, E., Rumohr, H., Soetaert, K. \& Soltwedel, T. (1992). Trends in biomass, density and diversity of North Sea macrofauna. ICES Journal of Marine Science, 49, 13-22.

Heip, C. \& Craeymeersch, J.A. (1995). Benthic community structures in the North Sea. Helgoländer Meeresuntersuchungen, 49, 313-328.
Heip, C., Herman, R. \& Vincx, M. (1984). Variability and productivity of meiobenthos in the Southern Bight of the North Sea. Rapports et Proces-verbaux des Réunions. Conseil International pour l'Éxploration de la Mer, 183, 51-56.

Heip, C., Huys, R., Vincx, M. van Reusel, A., Smol, N., Herman, R.\& Herman, P.M.J. (1990). Composition, distribution, biomass and production of North Sea meiofauna. Netherlands Journal of Sea Research, 26, 333-342.

Hiddink, J.G., Jennings, S., Sciberras, M., Szostek, C.L., Hughes, K.M., Ellis, N., Rijnsdorp, A.D., McConnaughey, R.A., Mazor, T., Hilborn, R., Collie, J.S., Pitcher, C.R., Amoroso, R.O., Parma, A.M., Suuronen, P. \& Kaiser, M.J. (2017). Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proceedings of the National Academy of Sciences, 114, 8301-8306.

Holst, J. C., Jansen, T. \& Slotte, A. (2016). Quantifying changes in abundance, biomass, and spatial distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic seas from 2007 to 2014. ICES Journal of Marine Science, 73, 359-373.

ICES (2013a). Mackerel in the Northeast Atlantic (combined Southern, Western, and North Sea spawning components). International Council for the Exploration of the Sea Advice Book 2013, Book 9, Section 9.4.17, 17pp.

ICES (2013b). Report of the Workshop to Review and Advise on Seabird Bycatch (WKBYCS), 14-18 October 2013, Copenhagen, Denmark. International Council for the Exploration of the Sea Council Meeting 2013/ACOM:77, 79 pp.

ICES (2015a). ICES Advice, Northeast Atlantic and adjacent seas. 1.6.1.1 Bycatch of small cetaceans and other marine animals - Review of national reports under Council Regulation (EC) No. 812/2004 and other published documents. 5pp.

ICES (2015b). Report of the Working Group on Bycatch of Protected Species (WGBYC), 2-6 February 2015, ICES Headquarters, Copenhagen, Denmark. International Council for the Exploration of the Sea Council Meeting 2015/ACOM:26, 82 pp.

ICES (2016). Ecosystem Overviews: Greater North Sea Ecoregion. International Council for the Exploration of the Sea Advice 2016, Book 6, Section 6.1. 22pp.

ICES (2018). Report from the Working Group on Bycatch of Protected Species (WGBYC), 1-4 May 2018, Reykjavic, Iceland. International Council for the Exploration of the Sea Council Meeting 2018/ACOM:25, 128pp.

Kaschner,K. (2003). Review of small cetacean by catch in the ASCOBANS area and adjacent waters - current status and suggested future actions. MOP4/Doc21(s) presented at the \(4^{\text {th }}\) Meeting of the Parties to ASCOBANS, Esbjerg, Denmark. 122pp.

Kiinitzer, A., Basford, D., Craeymeersch, J.A., Dewarumez, J.M., Dorjes, J., Duineveld, G.C.A., Eleftheriou, A.,. Heip, C., Herman, P., Kingston, P., Niermann, U., Rachor, E., Rumohr, H. \& de Wilde, P.A.J. (1992). The benthic infauna of the North Sea: species distribution and assemblages. ICES Journal of Marine Science, 49, 127-143.

Kirby, R.R., Beaugrand, G. \& Lindley, J.A. (2008). Climate-induced effects on the meroplankton and the benthic-pelagic ecology of the North Sea. Limnology and Oceanography, 53, 1805-1815.

Larsen, F. \& Eigaard, O.R. (2014). Acoustic alarms reduce bycatch of harbour porpoises in Danish North Sea gillnet fisheries. Fisheries Research, 153, 108-112.

Lassen H, Cross D, \& Christiansen E (2012). One hundred years of catch statistics for the Northeast Atlantic. International Council for the Exploration of the Sea Community Research Report, 311, 25pp.

Lavigne, D.M., Innes, S., Worthy, G.A.J., Kovacs, K.M., Schmitz, O.J. \& Hickie, J.P. (1986). metabolic rates of seals and whales. Canadian Journal of Zoology, 64, 279-284.

Lindley, J.A. \& Kirby R.R. (2007). Long-term changes in the meroplankton of the North Sea. International Council for the Exploration of the Sea Council Meeting 2007/A:16, 10pp.

Lohse L., Malschaert J.F.P., Slomp C.P., Helder W., \& Van Raaphorst W. (1993). Nitrogen cycling in North Sea sediments: interaction of denitrification and nitrification in offshore and coastal areas. Marine Ecology Progress Series, 101, 283-296.

Mackinson, S., Daskalov, G. (2007). An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation. Scientific Series Technical Report, Cefas Lowestoft, 142, 195pp.

Maraun, D. (2016). Bias Correcting Climate Change Simulations - a Critical Review. Current Climate Change Reports, 2, 211-220.
Modica, L., Velasco, F., Preciado, I., Soto, M. \& Greenstreet, S. P. R. (2014). Development of the large fish indicator and associated targetfor a Northeast Atlantic fish community. ICES Journal of Marine Science, 71, 2403-2415.

Morizur Y., Berrow S.D., Tregenza N., Couperus A.S. \& Pouvreau S. (1999). Incidental catches of marine mammals in pelagic trawl fisheries of the northeast Atlantic. Fisheries Research, 41, 297-307.

Morris, M.D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33, 161-174.
Northridge, S.P. \& Hammond, P.S. (1999). Estimation of porpoise mortality in UK gill and tangle net fisheries in the North Sea and west coast of Scotland. SC/51/SM42. Unpublished paper presented to the International Whaling Commission Scientific Committee, 15 pp .

Northridge, S.P., Mackay, A.I. \& Cross, T. (2005). Dolphin bycatch: observations and mitigation work in the UK bass pair trawl fishery 20042005 season. Sea Mammal Research Unit, University of St Andrews, Scotland. 8pp.

Nøttestad, L., Utne, K. R., Oskarsson, G. J., Jónsson, S. T., Jacobsen, J. A., Tangen, O., Anthonypillai, V., Aanes, S., Volstad, J. H., Bernasconi, M., Debes, H., Smith, L., Sveinbjörnsson, S., Holst, J.C., Jansen, T. \& Slotte, A. (2016). Quantifying changes in abundance, biomass, and spatial distribution of Northeast Atlantic mackerel ( Scomber scombrus) in the Nordic seas from 2007 to 2014. ICES Journal of Marine Science, 73, 359-373.

Olsen, E. \& Holst, J.C., (2001). A note on common minke whale (Balaenoptera acutorostrata) diets in the Norwegian Sea and North Sea. Journal of Cetacean Research and Management, 3, 179-183.

Palomares, M. L. D. \& Pauly, D. (2019). On the creeping increase of vessels' fishing power. Ecology and Society, 24(3):31, 7pp. doi.org/10.5751/ES-11136-240331

Pierce, G.J., Bailey, N., Stratoudakis, Y. \& Newton, A. (1998). Distribution and abundance of the fished population of Loligo forbesi in Scottish waters: analysis of research cruise data. ICES Journal of Marine Science, 55, 14-33.

Pierce G. J., Caldas M., Cedeira J., Santos M. B., Llavona A., Covelo P., Martinez G., Torres, J., Sacau, M. \& López_, A. (2010). Trends in cetacean sightings along the Galician coast, north-western Spain, 2003-2007, and inferences about cetacean habitat preferences. Journal of the Marine Biological Association of the United Kingdom, 90, 1547-1560.

Read, F.L., Evans, P.G.H. and Dolman, S.J. (2017). Cetacean bycatch monitoring and mitigation under EC Regulation 812/2004 in the Northeast Atlantic, North Sea and Baltic Sea from 2006 to 2014. Whale and Dolphin Conservation Report. 68 pp (https://www.seawatchfoundation.org.uk/wp-content/uploads/2017/11/Read-et-al_2017.pdf).

Ricciardi, A. \& Bourget, E. (1998). Weight-to-weight conversion factors for marine benthic macroinvertebrates. Marine Ecology Progress Series, 163, 245-251.

Ruardij, P. \& Van Raaphorst, W. (1995). Benthic nutrient regeration in the ERSEM Ecosystem model of the North Sea. Netherlands Journal of Sea Research 33 (3/4), 453-483.

Ryan, C., Leaper, R., Evans, P.G.H., Dyke, K., Robinson, K.P., Haskins, G.N., Calderan, S., van Geel, N., Harries, O., Froud, K., Brownlow, A. \& Jack, A. (2016). Entanglement: An emerging threat to Humpback Whales in Scottish waters. International Whaling Commission SC/66b/HIM/01, 12pp.

Scientific, Technical and Economic Committee for Fisheries (STECF) (2014). Evaluation of Fishing Effort Regimes in European Water - Part 2 (STECF-14-20). Holmes, S. (Ed). Publications Office of the European Union, Luxembourg, EUR 27027 EN, JRC 93183. 844pp.

Sea Mammal Research Unit (SMRU) \& Marine Scotland (2017). Estimated at-sea distribution of Grey and Harbour Seals - updated maps 2017. doi: 10.7489/2029-1, https://data.marine.gov.scot/dataset/estimated-sea-distribution-grey-and-harbour-seals-updated-maps-2017

Serpetti, N. (2012). Modelling and mapping the physical and biogeochemical properties of sediments on the North Sea coastal waters. PhD Thesis, University of Aberdeen. 249pp.

Serpetti, N., Heath, M., Rose, M. \& Witte, U. (2012). Mapping organic matter in seabed sediments off the north-east coast of Scotland (UK) from acoustic reflectance data. Hydrobiologia, 680, 265-284.

Serpetti, N., Witte, U. \& Heath, M. (2016). Statistical modelling of variability in sediment-water nutrient and oxygen fluxes. Frontiers in Earth Science, 4, 65, 17pp. 08 June 2016. doi: 10.3389/feart.2016.00065

Simpson, D., Fagerli, H.J., Jonson, J.E., Tsyro, S., Wind, P. \& Tuovinen, J.-P. (2003). Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP Status Report 1/2003 PART I Unified EMEP Model Description., Norwegian Meteorological Institute, Oslo, Norway. 104pp.

Sjøtun, K., Fredriksen, S. \& Rueness, J. (1996). Seasonal growth and carbon and nitrogen content in canopy and first-year plants of Laminaria hyperborea (Laminariales, Phaeophyceae). Phycologia, 35, 1-8.

Skogen, M.D. \& Moll, A., (2005). Importance of ocean circulation in ecological modelling: An example from the North Sea. Journal of Marine Systems, 57, 289-300.

Soetaert, K. \& Kones, J.K. (2014). Package NetIndices, network indices and food web descriptors in R. (https://cran.rroject.org/web/packages/NetIndices/vignettes/NetIndices.pdf)

Stephens, D. \& Diesing, M. (2015). Towards quantitative spatial models of seabed sediment composition, PLoS ONE, p. e0142502, doi:10.1371/journal.pone.0142502.

Tarrasón, L. (2003). Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP Status Report 1/2003 Part II, Unified EMEP Model Performance. Norwegian Meteorological Institute, Oslo, Norway. 170pp

Tasker, M. L., Camphuysen, C. J., Cooper, J., Garthe, S., Montevecchi, W. A., andBlaber, S. J. M. (2000). The impacts of fishing on marine birds. ICES Journal of Marine Science, 57, 531-547.

Taylor, J.R.E. \& Konarzewski, M. (1989) On the importance of fat reserves for Little Auk Alle alle chicks. Oecologia, 81, 551-558.
van der Kooii, J., Engelhard, G.H. \& Righton, D.A. (2016). Climate change and squid range expansion in the North Sea. Journal of Biogeography, 43, 2285-2298.

Vinther, M. (1995). Investigations on the North Sea gillnet fisheries. Definitive report of the Danish Institute for Fisheries and Marine Science. PEM/93/01.

Vinther, M. (1999). Bycatches of harbour porpoises (Phocoena phocoena L.) in Danish set-net fisheries. Journal of Cetacean Research and Management, 1, 123-135.

Vinther, M. \& Larsen, F. (2004). Updated estimates of harbour porpoise (Phocoena phocoena) bycatch in the Danish North Sea bottom-set gillnet fishery. Journal of Cetacean Research and Management, 6, 19-24.

Waggitt, J.J., Evans P.G.H. \& Andrade, J. et al. (2019). Distribution maps of cetacean and seabird populations in the North-East Atlantic. Journal of Applied Ecology, first published online 26 October 2019. doi:10.1111/1365-2664.13525

Wiedenfeld, D. A., Iudicello, S., Atkins, N., Bricklemyer, E. C., Gentner, B. \& Johnson, A. (2012). Analyses of Seabird Bycatch in Fisheries Selling Seafood in the US Market. American Bird Conservancy, The Plains, Virginia, USA, 135 pp.

Wiesner, M.G., Haake, B. \& Wirth, H. (1990). Organic facies of surface sediments in the North Sea. Organic Geochemistry, 15, 419-432.
Wilson, R.J., Speirs, D.C., Sabatino, A. \& Heath, M.R. (2018). A synthetic map of the north-west European Shelf sedimentary environment for applications in marine science. Earth System Science Data, 10, 109-130.

Zemke-White, W.L., Speed, S.R. \& McClary, D.J. (2005). Beach-cast seaweed: a review. New Zealand Fisheries Assessment Report 2005/44. 47pp

Zydelis, R., Small, C. \& French, G. (2013). The incidental catch of seabirds in gillnet fisheries: A global review. Biological Conservation, 162, 76-88.```

